机器学习:数据处理与特征工程

这篇具有很好参考价值的文章主要介绍了机器学习:数据处理与特征工程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习:数据处理与特征工程,# 概念及理论,机器学习,深度学习,人工智能,数据分析

机器学习中的数据处理和特征工程是非常关键的步骤,它们直接影响模型的性能和泛化能力。以下是一些常见的数据处理和特征工程技术:

数据处理:

  1. 缺失值处理: 处理数据中的缺失值,可以选择删除缺失值、填充均值/中位数/众数,或使用插值方法。

  2. 异常值处理: 检测和处理异常值,可以使用统计方法或基于模型的方法。

  3. 数据标准化和归一化: 将不同特征的值范围缩放到相似的尺度,以避免某些特征对模型的影响过大。

  4. 类别特征编码: 将分类变量转换为模型可以处理的格式,如独热编码或标签编码。

  5. 日期和时间处理: 提取有用的信息,如年份、月份、星期几等,可以帮助模型捕捉时间相关的模式。

  6. 数据分割: 将数据集分为训练集、验证集和测试集,以便评估模型的泛化性能。

特征工程:

  1. 特征选择: 选择最相关的特征,去除冗余信息,减少模型复杂性。

  2. 衍生特征: 根据现有特征创建新的特征,以提供更多信息。

  3. 多项式特征: 将特征的多项式组合加入数据,以捕捉特征之间的非线性关系。

  4. 文本特征处理: 对文本数据进行向量化,可以使用词袋模型、TF-IDF等方法。

  5. 特征缩放: 将特征缩放到相似的范围,以避免某些特征对模型的影响过大。

  6. 特征交叉: 将不同特征进行组合,创造新的特征,以便更好地捕捉数据之间的关系。

  7. Embedding: 对类别型特征进行嵌入表示,将其映射到低维空间。

  8. 处理高维数据: 使用降维技术如主成分分析(PCA)或 t-SNE 处理高维数据。

  9. 滑动窗口: 对时间序列数据应用滑动窗口,以提取滚动统计信息。

以上这些技术在实际应用中通常结合使用,具体选择取决于数据集的特点和机器学习任务的要求。数据处理和特征工程的质量直接关系到模型的性能和泛化能力,因此需要仔细调整和优化这些步骤。文章来源地址https://www.toymoban.com/news/detail-794712.html

到了这里,关于机器学习:数据处理与特征工程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习基础之《特征工程(1)—数据集》

    一、数据集 1、目标 知道数据集分为训练集和测试集 会使用sklearn的数据集 2、可用数据集 公司内部,比如百度、微博 数据接口,花钱 政府拥有的数据集 3、在学习阶段用到的数据集 scikit-learn特点: (1)数据量较小 (2)方便学习 UCI特点: (1)收录了360个数据集 (2)覆盖

    2024年02月12日
    浏览(53)
  • 【机器学习6】数据预处理(三)——处理类别数据(有序数据和标称数据)

    在【机器学习4】构建良好的训练数据集——数据预处理(一)处理缺失值及异常值这一篇文章中,主要说明热数据预处理的重要性以及如何处理缺失值及异常值这些数值特征。然而,在现实生活中遇到的数据集往往不仅仅只会包含 数值型特征 ,还会包含一个或者多个 类别特征

    2024年02月12日
    浏览(46)
  • 【机器学习】项目数据处理部分

    本文参考《阿里云天池大赛赛题解析》,拿到一个项目或者赛题,使用机器学习来进行预测分类,需要以下七个步骤: 项目(赛题)理解 数据探索 特征工程 模型训练 模型验证 特征优化 模型融合 本本是数据处理,即前3个步骤:项目理解、数据探索,特征工程。 简单的了解

    2024年02月07日
    浏览(50)
  • 【机器学习5】数据处理(二)Pandas:表格处理

    Pandas提供了三种数据类型,分别是 Series 、 DataFrame 和 Panel 。Series用于保存一维数据,DataFrame用于保存二维数据,Panel用于保存三维数据或者可变维数据。平时的表格处理数据分析最常用的数据类型是 Series 和 DataFrame ,Panel较少用到。 Series本质上是一个含有索引的 一维数组

    2024年02月13日
    浏览(45)
  • 机器学习24:《数据准备和特征工程-II》收集数据

    构建数据集常用的步骤如下所示:   收集原始数据。 识别特征和标签来源。 选择抽样策略。 拆分数据。 这些步骤在很大程度上取决于你如何构建 ML 问题。本文主要介绍——数据收集-Collecting Data。 目录 1. 数据集的大小和质量 1.1 数据集的大小

    2024年02月12日
    浏览(44)
  • 机器学习(8)---数据预处理

     1. 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。 譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度. 而在

    2024年02月09日
    浏览(42)
  • 机器学习实战4-数据预处理

    导库 归一化 另一种写法 将归一化的结果逆转 用numpy实现归一化 逆转 导库 实例化 查看属性 查看结果 逆标准化 关于如何选择这两种无量纲化的方式要具体问题具体分析,但是我们一般在机器学习算法中选择标准化,这就好比我们能让他符合标准正态分布为什么不呢?而且

    2024年02月13日
    浏览(47)
  • 【机器学习】数据清洗之处理缺失点

    🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 引言: 在机器学习领域,数据被广泛认为是驱动模型性能的关键。然而,在真实世界的数据中,缺

    2024年02月20日
    浏览(42)
  • 【机器学习】处理不平衡的数据集

            假设您在一家给定的公司工作,并要求您创建一个模型,该模型根据您可以使用的各种测量来预测产品是否有缺陷。您决定使用自己喜欢的分类器,根据数据对其进行训练,瞧:您将获得96.2%的准确率!         你的老板很惊讶,决定使用你的模型,没有任何

    2024年02月11日
    浏览(40)
  • 《人工智能-机器学习》数据预处理和机器学习算法(以企鹅penguins数据集为例)

    本项目使用到的数据集链接: https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv 加载给定或者自行选定的数据集,对数据进行查看和理解,例如样本数量,各特征数据类型、分布、特征和标签所表达的含义等,然后对其进行数据预处理工作,包括但不限于对敏感数据

    2024年02月10日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包