机器人技能学习-构建自己的数据集并进行训练

这篇具有很好参考价值的文章主要介绍了机器人技能学习-构建自己的数据集并进行训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概要

若想训练自己的场景,数据集的重要性不做过多赘述,下面就基于 robomimicrobosuite 构建自己的数据集进行讲解,同时,也会附上 trainrun 的流程,这样,就形成了闭环。

自建数据集

采集数据

采集数据可使用脚本 collect_human_demonstrations.py 完成,在采集过程中,需要自己定义 env 的相关信息,在实际使用时,存在以下几个问题:

  • 无法控制机器人精准的完成抓取工作
  • 机器人在某些姿态下,运动会出现漂移的情况

机器人技能学习-构建自己的数据集并进行训练,机器人,学习

格式转换

该功能脚本为 convert_robosuite.py,在进行执行是:

$ python conversion/convert_robosuite.py --dataset /path/to/demo.hdf5

生成OBS用于训练

python dataset_states_to_obs.py --dataset demo_myliftdraw.hdf5 --output AAA.hdf5

BUG记录

Bug1

在进行 conver_to_robosuite时,也有个小bug,当数据集中 demo数量较少时,比如为1,那么 convert 就会失败,这是因为在进行 split 时数据太少导致的,

"""
Helper script to convert a dataset collected using robosuite into an hdf5 compatible with
this repository. Takes a dataset path corresponding to the demo.hdf5 file containing the
demonstrations. It modifies the dataset in-place. By default, the script also creates a
90-10 train-validation split.

For more information on collecting datasets with robosuite, see the code link and documentation
link below.

Code: https://github.com/ARISE-Initiative/robosuite/blob/offline_study/robosuite/scripts/collect_human_demonstrations.py

Documentation: https://robosuite.ai/docs/algorithms/demonstrations.html

Example usage:

    python convert_robosuite.py --dataset /path/to/your/demo.hdf5
"""

import h5py
import json
import argparse

import robomimic.envs.env_base as EB
from robomimic.scripts.split_train_val import split_train_val_from_hdf5


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset",
        type=str,
        help="path to input hdf5 dataset",
    )
    args = parser.parse_args()

    f = h5py.File(args.dataset, "a") # edit mode
    # import ipdb; ipdb.set_trace()
    # store env meta

    env_name = f["data"].attrs["env"]
    env_info = json.loads(f["data"].attrs["env_info"])
    env_meta = dict(
        type=EB.EnvType.ROBOSUITE_TYPE,
        env_name=env_name,
        env_version=f["data"].attrs["repository_version"],
        env_kwargs=env_info,
    )
    if "env_args" in f["data"].attrs:
        del f["data"].attrs["env_args"]
    f["data"].attrs["env_args"] = json.dumps(env_meta, indent=4)

    print("====== Stored env meta ======")
    print(f["data"].attrs["env_args"])

    # store metadata about number of samples
    total_samples = 0
    for ep in f["data"]:
        # ensure model-xml is in per-episode metadata
        assert "model_file" in f["data/{}".format(ep)].attrs

        # add "num_samples" into per-episode metadata
        if "num_samples" in f["data/{}".format(ep)].attrs:
            del f["data/{}".format(ep)].attrs["num_samples"]
        n_sample = f["data/{}/actions".format(ep)].shape[0]
        f["data/{}".format(ep)].attrs["num_samples"] = n_sample
        total_samples += n_sample

    # add total samples to global metadata
    if "total" in f["data"].attrs:
        del f["data"].attrs["total"]
    f["data"].attrs["total"] = total_samples

    f.close()

    # create 90-10 train-validation split in the dataset
    split_train_val_from_hdf5(hdf5_path=args.dataset, val_ratio=0.1)

最后一行,只需要将 val_ration = 1 就可以了。

Bug2

描述:同样的操作过程,用自己新建的 env环境类生成数据,在进行 obs 生成时报错,但是用官方的 env 是没有问题的
机器人技能学习-构建自己的数据集并进行训练,机器人,学习
解决方法:不要试图随性构建自己的模型库,因为这玩意是按照固定路径搜索的,坑坑坑,忙了半天,发现是路径的问题,里面有个 robosuite 的固定关键词,这个会影响 to obs 的。
机器人技能学习-构建自己的数据集并进行训练,机器人,学习

Train && Test

Train 需要调用的脚本是:

$ python robomimic/robomimic/scripts/train.py --config bc_rnn.json

Test调用的脚本为:

$ python robomimic/robomimic/scripts/un_trained_agent.py --agent /path/to/model.pth --n_rollouts 50 --horizon 400 --seed 0 --video_path /path/to/output.mp4 --camera_names agentview robot0_eye_in_hand 

在进行训练时,需要对算法进行配置,即导入的 json 文件,以下是一个配置文件的案例,该文件来源于 mimicgen 生成的,其中,里面 有对于算法的部分参数, 比如 "algo_name": "bc",如果功底不够深厚的话,建议大家只改下数据集的 path 就可以了:

{
    "algo_name": "bc",
    "experiment": {
        "name": "source_draw_low_dim",
        "validate": false,
        "logging": {
            "terminal_output_to_txt": true,
            "log_tb": true,
            "log_wandb": false,
            "wandb_proj_name": "debug"
        },
        "save": {
            "enabled": true,
            "every_n_seconds": null,
            "every_n_epochs": 50,
            "epochs": [],
            "on_best_validation": false,
            "on_best_rollout_return": false,
            "on_best_rollout_success_rate": true
        },
        "epoch_every_n_steps": 100,
        "validation_epoch_every_n_steps": 10,
        "env": null,
        "additional_envs": null,
        "render": false,
        "render_video": true,
        "keep_all_videos": false,
        "video_skip": 5,
        "rollout": {
            "enabled": true,
            "n": 50,
            "horizon": 400,
            "rate": 50,
            "warmstart": 0,
            "terminate_on_success": true
        }
    },
    "train": {
        "data": "/home/idm/Documents/mimicgen/robosuite/robosuite/scripts/generate_dataset/tmp/draw_data/demo_obs.hdf5",
        "output_dir": "/home/idm/Documents/mimicgen/robosuite/robosuite/scripts/generate_dataset/tmp/draw_data/trained_models",
        "num_data_workers": 0,
        "hdf5_cache_mode": "all",
        "hdf5_use_swmr": true,
        "hdf5_load_next_obs": false,
        "hdf5_normalize_obs": false,
        "hdf5_filter_key": null,
        "hdf5_validation_filter_key": null,
        "seq_length": 10,
        "pad_seq_length": true,
        "frame_stack": 1,
        "pad_frame_stack": true,
        "dataset_keys": [
            "actions",
            "rewards",
            "dones"
        ],
        "goal_mode": null,
        "cuda": true,
        "batch_size": 100,
        "num_epochs": 2000,
        "seed": 1
    },
    "algo": {
        "optim_params": {
            "policy": {
                "optimizer_type": "adam",
                "learning_rate": {
                    "initial": 0.001,
                    "decay_factor": 0.1,
                    "epoch_schedule": [],
                    "scheduler_type": "multistep"
                },
                "regularization": {
                    "L2": 0.0
                }
            }
        },
        "loss": {
            "l2_weight": 1.0,
            "l1_weight": 0.0,
            "cos_weight": 0.0
        },
        "actor_layer_dims": [],
        "gaussian": {
            "enabled": false,
            "fixed_std": false,
            "init_std": 0.1,
            "min_std": 0.01,
            "std_activation": "softplus",
            "low_noise_eval": true
        },
        "gmm": {
            "enabled": true,
            "num_modes": 5,
            "min_std": 0.0001,
            "std_activation": "softplus",
            "low_noise_eval": true
        },
        "vae": {
            "enabled": false,
            "latent_dim": 14,
            "latent_clip": null,
            "kl_weight": 1.0,
            "decoder": {
                "is_conditioned": true,
                "reconstruction_sum_across_elements": false
            },
            "prior": {
                "learn": false,
                "is_conditioned": false,
                "use_gmm": false,
                "gmm_num_modes": 10,
                "gmm_learn_weights": false,
                "use_categorical": false,
                "categorical_dim": 10,
                "categorical_gumbel_softmax_hard": false,
                "categorical_init_temp": 1.0,
                "categorical_temp_anneal_step": 0.001,
                "categorical_min_temp": 0.3
            },
            "encoder_layer_dims": [
                300,
                400
            ],
            "decoder_layer_dims": [
                300,
                400
            ],
            "prior_layer_dims": [
                300,
                400
            ]
        },
        "rnn": {
            "enabled": true,
            "horizon": 10,
            "hidden_dim": 400,
            "rnn_type": "LSTM",
            "num_layers": 2,
            "open_loop": false,
            "kwargs": {
                "bidirectional": false
            }
        },
        "transformer": {
            "enabled": false,
            "context_length": 10,
            "embed_dim": 512,
            "num_layers": 6,
            "num_heads": 8,
            "emb_dropout": 0.1,
            "attn_dropout": 0.1,
            "block_output_dropout": 0.1,
            "sinusoidal_embedding": false,
            "activation": "gelu",
            "supervise_all_steps": false,
            "nn_parameter_for_timesteps": true
        }
    },
    "observation": {
        "modalities": {
            "obs": {
                "low_dim": [
                    "robot0_eef_pos",
                    "robot0_eef_quat",
                    "robot0_gripper_qpos",
                    "object"
                ],
                "rgb": [],
                "depth": [],
                "scan": []
            },
            "goal": {
                "low_dim": [],
                "rgb": [],
                "depth": [],
                "scan": []
            }
        },
        "encoder": {
            "low_dim": {
                "core_class": null,
                "core_kwargs": {},
                "obs_randomizer_class": null,
                "obs_randomizer_kwargs": {}
            },
            "rgb": {
                "core_class": "VisualCore",
                "core_kwargs": {},
                "obs_randomizer_class": null,
                "obs_randomizer_kwargs": {}
            },
            "depth": {
                "core_class": "VisualCore",
                "core_kwargs": {},
                "obs_randomizer_class": null,
                "obs_randomizer_kwargs": {}
            },
            "scan": {
                "core_class": "ScanCore",
                "core_kwargs": {},
                "obs_randomizer_class": null,
                "obs_randomizer_kwargs": {}
            }
        }
    },
    "meta": {
        "hp_base_config_file": null,
        "hp_keys": [],
        "hp_values": []
    }
}

部分训练截图如下,可以看出,因数据太少,导致模型不收敛:
机器人技能学习-构建自己的数据集并进行训练,机器人,学习

参考资料

RoboMimic文章来源地址https://www.toymoban.com/news/detail-794869.html

到了这里,关于机器人技能学习-构建自己的数据集并进行训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用langchain与你自己的数据对话(五):聊天机器人

    之前我已经完成了使用langchain与你自己的数据对话的前四篇博客,还没有阅读这四篇博客的朋友可以先阅读一下: 使用langchain与你自己的数据对话(一):文档加载与切割 使用langchain与你自己的数据对话(二):向量存储与嵌入 使用langchain与你自己的数据对话(三):检索(Retrieva

    2024年02月13日
    浏览(36)
  • isaacgym(legged_gym)学习 (一)—— 添加自己的机器人模型并训练

    提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 例如:isaacgym系列学习记录。 这里默认已经安装好isaacgym学习环境,并可以成功运行其中的案例 这里我以宇数科技的GO2机器人为例,去其官网下载GO2的urdf文件 下载好了urdf文件,将其中resources/robots/go2文

    2024年02月20日
    浏览(38)
  • 技能下载中:Sora视频让机器人秒学任何技艺!

    视频:技能下载中:Sora视频让机器人秒学任何技艺! 引言 在机器人成为平凡工匠和前沿先驱的时代,我们正站在新黎明的边缘。本文将探讨斯坦福大学的通用操作接口(UMI)及其与OpenAI的Sora如何共同推进机器人技术,开创未来学习的新纪元。 正文 斯坦福的通用操作接口(

    2024年02月22日
    浏览(45)
  • 理解构建LLM驱动的聊天机器人时的向量数据库检索的局限性 - (第1/3部分)

    本博客是一系列文章中的第一篇,解释了为什么使用大型语言模型( LLM )部署专用领域聊天机器人的主流管道成本太高且效率低下。在第一篇文章中,我们将讨论为什么矢量数据库尽管最近流行起来,但在实际生产管道中部署时从根本上受到限制。在下面的文章中,我们说

    2024年02月14日
    浏览(40)
  • 【机器人学习】MPU6050数据的换算

    由于近期在搞IMU的姿态解算,需要用一个IMU传感器去进行角度的获取,因此采用了最实惠的MPU6050!通过IIC读取MPU6050后的数据只是简单的数值,并没有物理意义,因此本文主要记录下如何将MPU6050的数据换算成有意义的物理值。 要得到MPU6050的具体参数,那必须是官方的datashe

    2024年02月14日
    浏览(44)
  • 如何防止机器人或者爬虫访问自己的网站

    在网站的robots.txt文件中设置禁止机器人访问的页面或目录。 Robots.txt是一个文本文件,用于告诉搜索引擎哪些页面或目录不应该被访问。可以通过在robots.txt文件中添加\\\"Disallow\\\"指令来告诉机器人禁止访问某些页面或目录。例如: 上述例子中,我们禁止了所有机器人访问/admin

    2024年02月12日
    浏览(47)
  • 自己制作智能语音机器人(基于jetson nano)

    如上图,主要采用jetson上编写python代码实现,支持离线语音唤醒、在线语音识别、大模型智能文档、在线语音合成。 所需硬件如下: jetson nano:linux 科大讯飞麦克风硬件:AIUI R818麦克阵列开发套件+6麦阵列,支持离线语音唤醒 USB免驱声卡+喇叭 所需软件如下: 科大讯飞在线语

    2024年02月15日
    浏览(103)
  • 手把手自己制作一个飞书机器人

    飞书机器人 如果你想添加新的对话逻辑,你只需要在 ChatApi.py 中添加新的if条件判断语句即可。如果你能开发出新功能,请在仓库中提出Pull requests合并请求,我将感激不尽! 2023年9月1日更新 更新了对话机器人返回帮助界面功能,用户发送“帮助”,返回机器人使用说明 20

    2024年02月03日
    浏览(126)
  • GPT2训练自己的对话问答机器人

    这里我搭建了虚拟的3.6环境 基于GPT2的中文闲聊机器人,模型实现基于HuggingFace的transformers ,精读GPT2-Chinese的论文和代码,获益匪浅。 data/train.txt:默认的原始训练集文件,存放闲聊语料;data/train.pkl:对原始训练语料进行tokenize之后的文件,存储一个list对象,list的每条数据表示一个

    2024年02月12日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包