python plt 绘图详解(plt.版本)

这篇具有很好参考价值的文章主要介绍了python plt 绘图详解(plt.版本)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.plt介绍

  python中的绘图工具 :matplotli,专门用于画图。

二.安装与导入

  工具包安装:

conda install matplotli

  导入:

import matplotlib.pyplot as plt

三.使用说明

1. 使用plt.plot与plt.show绘制并显示图像

plt.plot(x, y, color, linestyle, marker, markersize, markeredgewidth, markeredgecolor, markerfacecolor, alpha, linewidth)

(1)曲线颜色(color 简写为 c):

r g b y k
红色 绿色 蓝色 黄色 黑色

(2)点型(标记marker):

+ o * . x s d ^ v p
加号 圆圈 星号 实心点 叉号 正方形 钻石形 上三角 下三角 五角星

(3)线型(linestyle 简写为 ls):

- -.
实线 虚线 点线 点横线

(4)剩余参数说明

markersize 简写为 ms(标记大小):实数

markeredgewidth 简写为 mew(标记边缘宽度):实数

markeredgecolor 简写为 mec(标记边缘颜色):颜色选项中的任意值

markerfacecolor 简写为 mfc(标记表面颜色):颜色选项中的任意值

alpha(透明度): [0,1]之间的浮点数

linewidth(线宽):实数

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81]

# 绘制的曲线属性设置
line1, = plt.plot(x, y, color='r', marker='d', linestyle='--', markersize=6, alpha=0.5, linewidth=3)
line2, = plt.plot(x, y2, color='g', marker='*', linestyle='-', markersize=6, alpha=0.5, linewidth=3)
# plt.plot(x, y, 'rd--')  # 可以使用这种方式进行画图的属性设置

# x,y坐标轴名称设置,可以同时设置标签的字体大小颜色等
plt.xlabel(u'x坐标轴', fontsize=14, color='r')
plt.ylabel(u'y坐标轴', fontsize=14, color='b')

# 显示曲线图像
plt.show()
python plt,python,python,开发语言
plt.show()显示结果

2.图像属性设置

(1)坐标轴标签设置

# 注意,要使用中文的话,需要在引入库后,添加下列代码
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

# x,y坐标轴名称设置,可以同时设置标签的字体大小颜色等
plt.xlabel(u'x坐标轴', fontsize=14, color='r')
plt.ylabel(u'y坐标轴', fontsize=14, color='b')

(2)图像标题设置

# 设置图表标题
plt.title(u"图像标题", fontsize=14, color='k')

(3)图例设置

# 添加图例
plt.legend([line1, line2], ["Weekend", "Weekday"], loc='upper left')

(4)坐标轴范围设置

# 设置x轴的范围为[0, 100],y轴的范围为[0, 100], 或者通过xlim, ylim设置XY轴的范围上下限
plt.axis([0, 10, 0, 100])
# plt.xlim(0, 10)
# plt.ylim(0, 100)

(5)坐标间隔设定

plt.xticks(参数一,参数二,参数三) 用来实现对x轴和y轴坐标间隔(也就是轴记号)的设定。

  • 参数一:x或者y的参数
  • 参数二:新的标签,个数必须和参数一个数相同
  • 参数三:旋转角度
# 坐标间隔及标签设定
a = [1, 2, 3, 4, 5]
labels = ['A', 'B', 'C', 'D', 'E']
plt.xticks(a, labels, rotation=0)

(6)添加网格

# 添加网格
plt.grid(visible=True, axis='x')  # 只显示x轴网格线
plt.grid(visible=True, axis='y')  # 只显示y轴网格线
python plt,python,python,开发语言
最终显示效果

全部代码

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y2 = [1, 4, 9, 16, 25, 36, 49, 64, 81]

# 绘制的曲线属性设置
line1, = plt.plot(x, y, color='r', marker='d', linestyle='--', markersize=6, alpha=0.5, linewidth=3)
line2, = plt.plot(x, y2, color='g', marker='*', linestyle='-', markersize=6, alpha=0.5, linewidth=3)
# plt.plot(x, y, 'rd--')  # 可以使用这种方式进行画图的属性设置

# x,y坐标轴名称设置,可以同时设置标签的字体大小颜色等
plt.xlabel(u'x坐标轴', fontsize=14, color='r')
plt.ylabel(u'y坐标轴', fontsize=14, color='b')

# 设置图表标题
plt.title(u"图像标题", fontsize=14, color='k')

# 添加图例
plt.legend([line1, line2], ["Weekend", "Weekday"], loc='upper left')

# 设置x轴的范围为[0, 100],y轴的范围为[0, 100], 或者通过xlim, ylim设置XY轴的范围上下限
plt.axis([0, 10, 0, 100])
# plt.xlim(0, 10)
# plt.ylim(0, 100)

# 坐标间隔及标签设定
a = [1, 2, 3, 4, 5]
labels = ['A', 'B', 'C', 'D', 'E']
plt.xticks(a, labels, rotation=0)

# 添加网格
plt.grid(visible=True, axis='x')  # 只显示x轴网格线
plt.grid(visible=True, axis='y')  # 只显示y轴网格线

# 显示曲线图像
plt.show()


3.一张图像上绘制多个图

  • 使用plt.figure(arg)创建画板,arg为画板名称
  • 使用plt.subplot(arg1, arg2, arg3)方法创建画纸,并选择当前画纸并绘图。其中,ag1代表第几行,arg2代表第几列,arg3代表第几个图像
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

x = np.arange(0, 100, 10)

plt.figure(1)  # 生成第一个图,且当前要处理的图为fig.1

plt.subplot(1, 2, 1)  # fig.1是一个一行两列布局的图,且现在画的是左图
y1 = np.exp(x)
plt.plot(x, y1, color="r", linestyle="-", marker="^", linewidth=1)  # 画图
plt.xlabel("x")
plt.ylabel("y1")

plt.figure(1)  # 当前要处理的图为fig.1,而且当前图是fig.1的左图
plt.subplot(1, 2, 2)  # 当前图变为fig.1的右图
y2 = np.exp(1.5 * x)
plt.plot(x, y2, color="b", linestyle="-", marker="v", linewidth=1)
plt.xlabel("x")
plt.ylabel("y2")

plt.show()
python plt,python,python,开发语言
多图显示

4.在一张图上绘制双坐标轴

主要通过fig.add_subplot()来添加坐标轴,然后把坐标轴绘制在同一张图上文章来源地址https://www.toymoban.com/news/detail-795012.html

import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

# 生成数据
x = np.arange(1, 12, 4)
y = np.arange(1, 4, 1)
x2 = x * 10
y2 = y ** 2

# 设置画布大小
width, height = 16, 14  # 单位为cm;因为保存图片时使用 bbox_inches = 'tight' 可能使图片尺寸略微放大,所以此处宽度设置得略小

# 设置刻度线在坐标轴内
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'

# 绘制图像
lns = []  # 用于存储绘图句柄以合并图例的list

# 创建画布并设置大小
fig = plt.figure()
fig.set_size_inches(width / 2.54, height / 2.54)  # 因为画布输入大小为厘米,此处需转换为英寸,所以除以2.54

# 通过 add_subplot 方式创建两个坐标轴,相当于在同一个子图上叠加了两对坐标系
ax = fig.add_subplot(111, label="1")
ax2 = fig.add_subplot(111, label="2", frame_on=False)

# 绘制图1并将绘图句柄返回,以便添加合并图例
lns1 = ax.plot(x, y, color='r', label='r')
lns = lns1
lns2 = ax2.plot(x2, y2, color='b', label='b')
lns += lns2

# 调整第二对坐标轴的label和tick位置,以实现双X轴双Y轴效果
ax2.xaxis.tick_top()
ax2.yaxis.tick_right()
ax2.xaxis.set_label_position('top')
ax2.yaxis.set_label_position('right')

# 设置坐标轴标注
ax.set_xlabel("X1", color='r', fontsize=12)
ax.set_ylabel("Y1", color='r', fontsize=12)
ax2.set_xlabel('X2', color='b', fontsize=12)
ax2.set_ylabel('Y2', color='b', fontsize=12)

# 设置图表标题
fig.suptitle("Title", fontsize=12)

# 设置坐标轴刻度颜色
ax.tick_params(axis='x', colors='r')
ax.tick_params(axis='y', colors='r')
ax2.tick_params(axis='x', colors='b')
ax2.tick_params(axis='y', colors='b')

# 设置坐标轴线颜色
ax.spines["left"].set_color("r")  # 修改左侧颜色
ax.spines["right"].set_color("b")  # 修改右侧颜色
ax.spines["top"].set_color("b")  # 修改上边颜色
ax.spines["bottom"].set_color("r")  # 修改下边颜色

# 添加图例
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=0, fontsize=12)
plt.tight_layout()
plt.show()

到了这里,关于python plt 绘图详解(plt.版本)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【开发语言】C语言与Python的互操作详解

    博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客内容主要围绕:        5G/6G协议

    2024年02月10日
    浏览(66)
  • 写程序必会的C语言文件操作(上)附手绘图详解

    目录 1. 为什么使用文件  2. 什么是文件 2.1 程序文件  2.2 数据文件 2.3 文件名 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭实例 4. 文件的顺序读写 字符输入函数 fgetc 文本行输出函数 fputs 文本行输入函数 fgets  格式化输出函数 fprintf 格式化输入函数 fscanf sprint

    2023年04月21日
    浏览(44)
  • python——matplotlib绘图详解大全

    目录 一、图形绘制大全 1.1 2D图形绘制 1.1.1 绘制单线图形 1.1.2 绘制多线图 1.1.3 读取文件中的数据绘制图形 1.1.4 绘制散点图 1.1.5 绘制条形图 1.1.5.1 单条条形图 1、垂直条形图 2、水平条形图 1.1.5.2 多组条形图 1.1.5.3 堆积条形图 1.1.5.4 对称条形图 1.1.4 饼图 1.1.5 直方图 1.1.6 箱形

    2024年02月09日
    浏览(42)
  • Python Matplotlib 3D绘图详解(汇总)

    最初开发的 Matplotlib,仅支持绘制 2d 图形,后来随着版本的不断更新, Matplotlib 在二维绘图的基础上,构建了一部分较为实用的 3D 绘图程序包,比如 mpl_toolkits.mplot3d,通过调用该程序包一些接口可以绘制 3D散点图、3D曲面图、3D线框图等 mpl_toolkits 是 Matplotlib 的绘图工具包。

    2024年02月04日
    浏览(39)
  • 【Visual Studio】Qt 的实时绘图曲线功能,使用 C++ 语言,配合 Qt 开发串口通信界面

    知识不是单独的,一定是成体系的。更多我的个人总结和相关经验可查阅这个专栏:Visual Studio。 战斗背景:做了个串口接收界面,用来接收传输过来的信号。但是光用数字显示太单调,需要用图线显示出来。 战略目标:干掉它。 战术路线:Qt 绘图可以使用 Qt Charts,先了解

    2024年02月11日
    浏览(52)
  • Python Matplotlib数据可视化绘图之(六)————图片大小、颜色、标题、纵横坐标、画布和绘图区域背景颜色、Legend(图例)等的参数设置详解

    前面五期的文章详细讲述了Python Matplotlib数据可视化绘图的方法技巧,主要涉及柱状图(《Python Matplotlib数据可视化绘图之(一)————柱状图》)、箱线图(《Python Matplotlib数据可视化绘图之(二)————箱线图》)、散点图(《Python Matplotlib数据可视化绘图之(三)—

    2024年02月06日
    浏览(85)
  • 【Python】plt.title()函数

    plt.title() 是 matplotlib 库中用于设置图形标题的函数。 其中: label 是要设置的标题文本,可以是字符串类型或者是数学表达式。 fontdict 是一个可选的参数,用于设置标题的字体属性,例如字体名称、大小、颜色等。 loc 参数用于指定标题的位置,可以使用字符串(例如 ‘lef

    2024年02月07日
    浏览(46)
  • python绘制子图技巧——plt.subplot和plt.subplots、及坐标轴修改

    偶然发现 python(matplotlib) 中绘制子图有两种方法,一种是 plt.subplot ,另一种是 plt.subplots ,这篇博客说一下这两种方法的区别,用法,以及常用的一些函数。 plt.figure 的作用是定义一个大的图纸,可以设置图纸的大小、分辨率等,例如 plt.plot() 是直接在当前活跃的的axes上面

    2023年04月09日
    浏览(41)
  • chatgpt赋能Python-python_plt颜色

    在数据可视化的过程中,使用合适的颜色方案可以让图表更加清晰、易于理解。Python的matplotlib库中的plt模块提供了丰富的颜色方案供我们使用。在本篇文章中,我们将深入探讨plt颜色的基础知识,以及常用颜色和自定义颜色的技巧,帮助您更好地选择和运用颜色方案。 在m

    2024年02月06日
    浏览(31)
  • 【深度学习】 Python 和 NumPy 系列教程(十五):Matplotlib详解:2、3d绘图类型(1):线框图(Wireframe Plot)

    目录  一、前言 二、实验环境 三、Matplotlib详解  1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 线框图(Wireframe Plot)         Python是一种高级编程语言,由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。Python具有丰富

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包