【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa

这篇具有很好参考价值的文章主要介绍了【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Introduction

  • 提出 Latent Consistency Models (LCMs),图像生成速度更快、质量更好.
  • 提出一种简单高效的 one-stage guided consistency distillation 方法,用极少的采样步数蒸馏 Stable Diffusion,进一步提出 skipping-step 技术加快收敛过程.
  • 介绍针对 LCMs 的微调方法.

Preliminaries

Diffusion Models

使用 empirical PF-ODE 表示模型的逆扩散过程:

d x t d t = f ( t ) x t + g 2 ( t ) 2 σ t ϵ θ ( x t , t ) \large \frac{\mathrm{d}x_t}{\mathrm{d}t}=f(t)x_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(x_t,t) dtdxt=f(t)xt+2σtg2(t)ϵθ(xt,t)

对于 class-conditioned 扩散模型,Classifier-Free Guidance (CFG) 有效地提高了生成样本的质量,用 ω \omega ω表示 CFG 系数,原始的噪声预测模型可以被替换为:

ϵ θ ^ ( z t , ω , c , t ) = ( 1 + ω ) ϵ θ ( z t , c , t ) − ω ϵ θ ( z t , ∅ , t ) \large\hat{\epsilon_{\theta}}(z_t,\omega,c,t)=(1+\omega)\epsilon_{\theta}(z_t,c,t)-\omega\epsilon_{\theta}(z_t,\varnothing,t) ϵθ^(zt,ω,c,t)=(1+ω)ϵθ(zt,c,t)ωϵθ(zt,,t)

Consistency Models

F θ ( x , t ) F_{\theta}(\mathrm{x}, t) Fθ(x,t)表示任意形式的神经网络,使用 sikp connection 可以将模型表示为:

f θ ( x , t ) = c s k i p ( t ) x + c o u t ( t ) F θ ( x , t ) \large f_{\theta}(\mathrm{x}, t)=c_{skip}(t)\mathrm{x}+c_{out}(t)F_{\theta}(\mathrm{x},t) fθ(x,t)=cskip(t)x+cout(t)Fθ(x,t)

其中边界条件为 c s k i p ( ϵ ) = 1 c_{skip}(\epsilon)=1 cskip(ϵ)=1 c o u t ( ϵ ) = 0 c_{out}(\epsilon)=0 cout(ϵ)=0.
损失函数为:

L C D N ( θ , θ − ; ϕ ) = E [ λ ( t n ) d ( f θ ( x t n + 1 , t n + 1 ) , f θ − ( x ^ t n ϕ , t n ) ] \large \mathcal{L}_{CD}^{N}(\theta, \theta^-;\phi)=\mathbb{E}\left[\lambda(t_n)d(f_{\theta}(\mathrm{x}_{t_{n+1}},t_{n+1}),f_{\theta^-}(\hat{\mathrm{x}}_{t_n}^{\phi}, t_n) \right] LCDN(θ,θ;ϕ)=E[λ(tn)d(fθ(xtn+1,tn+1),fθ(x^tnϕ,tn)]

θ − \theta^- θ使用 EMA 更新,计算公式如下:

θ − ← s t o p g a r d ( μ θ − + ( 1 − μ ) θ ) \large \theta^- \leftarrow \mathrm{stopgard}(\mu\theta^-+(1-\mu)\theta) θstopgard(μθ+(1μ)θ)

x ^ t n ϕ \hat{\mathrm{x}}_{t_n}^{\phi} x^tnϕ是从 x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1 x t n \mathrm{x}_{t_{n}} xtn的估计,计算公式如下:

x ^ t n ϕ = x t n + 1 + ( t n − t n + 1 ) Φ ( x t n + 1 , t n + 1 ; ϕ ) \large \hat{\mathrm{x}}_{t_n}^{\phi}=\mathrm{x}_{t_{n+1}} + (t_n-t_{n+1})\Phi(\mathrm{x}_{t_{n+1}}, t_{n+1};\phi) x^tnϕ=xtn+1+(tntn+1)Φ(xtn+1,tn+1;ϕ)

Latent Consistency Models

Consistency Distillation in the Latent Space

针对类似 Stable Diffusion的隐空间上的条件扩散模型,其 PF- ODE 逆过程可以表示为:

d z t d t = f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) \large \frac{\mathrm{d}z_t}{\mathrm{d}t}=f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t) dtdzt=f(t)zt+2σtg2(t)ϵθ(zt,c,t)

其中 z t z_t zt是图像隐向量, c c c是给定的条件. 类似CM中的做法,引入 f θ : ( z t , c , t ) ↦ z 0 f_{\theta}:(z_t,c,t)\mapsto z_0 fθ:(zt,c,t)z0,将其参数化为:

f θ ( z , c , t ) = c s k i p ( t ) z + c o u t ( t ) ( z − σ t ϵ ^ θ ( z , c , t ) α t ) \large f_{\theta}(z,c,t)=c_{skip}(t)z+c_{out}(t)\left(\frac{z-\sigma_t\hat{\epsilon}_{\theta}(z,c,t)}{\alpha_{t}} \right) fθ(z,c,t)=cskip(t)z+cout(t)(αtzσtϵ^θ(z,c,t))

具体的参数化形式由被蒸馏的扩散模型决定.
损失函数表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , c , t n + 1 ) , f θ − ( z ^ t n Ψ , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+1,c,tn+1),fθ(z^tnΨ,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ z t n + 1 z_{t_{n+1}} ztn+1 z t n z_{t_{n}} ztn的估计,计算方法如下:

z ^ t n Ψ − z t n + 1 = ∫ t n + 1 t n ( f ( t ) z t + g 2 ( t ) 2 σ t ϵ θ ( z t , c , t ) ) d t ≈ Ψ ( z t n + 1 , t n + 1 , t n , c ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}=\int_{t_{n+1}}^{t_n}\left(f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t)\right)\mathrm{d}t\approx\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c) z^tnΨztn+1=tn+1tn(f(t)zt+2σtg2(t)ϵθ(zt,c,t))dtΨ(ztn+1,tn+1,tn,c)

One-Stage Guided Distillation by Solving Augmented PF-ODE

使用CFG,损失函数可以表示为:

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , ω , c , t n + 1 ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},\omega,c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+1,ω,c,tn+1),fθ(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ的计算方法更新为

z ^ t n Ψ − z t n + 1 ≈ ( 1 + ω ) Ψ ( z t n + 1 , t n + 1 , t n , c ) − Ψ ( z t n + 1 , t n + 1 , t n , ∅ ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}\approx(1+\omega)\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c)-\Psi(z_{t_{n+1}}, t_{n+1}, t_n, \varnothing) z^tnΨztn+1(1+ω)Ψ(ztn+1,tn+1,tn,c)Ψ(ztn+1,tn+1,tn,)

Accelerating Distillation with Skipping Time Steps

扩散模型例如Stable Diffusion的总时间步长有 1000 1000 1000步,LCM在训练的采样需要覆盖这 1000 1000 1000步,既然相邻时间步之间的差值小,那么 f θ ( z t n + 1 , c , t n + 1 ) f_{\theta}(z_{t_{n+1}},c,t_{n+1}) fθ(ztn+1,c,tn+1) f θ ( z t n , c , t n ) f_{\theta}(z_{t_{n}},c,t_{n}) fθ(ztn,c,tn)之间的差距也小,这导致计算出来的损失小、收敛慢.

作者介绍了skipping-step 方法,原来度量时间步 t n + 1 t_{n+1} tn+1 t n t_n tn间的差距,改为度量 t n + k t_{n+k} tn+k t n t_n tn间的差距. 至此,LCM训练的损失函数为

L C D ( θ , θ − ; Ψ ) = E z , c , n [ d ( f θ ( z t n + k , ω , c , t n + k ) , f θ − ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+k}},\omega,c,t_{n+k}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD(θ,θ;Ψ)=Ez,c,n[d(fθ(ztn+k,ω,c,tn+k),fθ(z^tnΨ,ω,c,tn)]

z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tnΨ Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)的计算方法对应跨 k k k步,作者分别使用了DDIMDPM-SolverDPM-Solver++ 作为 PF-ODE solver,以DDIM为例,其对应的 Ψ ( ⋅ , ⋅ , ⋅ , ⋅ ) \Psi(·,·,·,·) Ψ(⋅,⋅,⋅,⋅)计算方法为

Ψ ( z t n + k , t n + k , t n , c ) = α t n α t n + k z t n + k − σ t n ( σ t n + k α t n α t n + k σ t n − 1 ) ϵ ^ θ ( z t n + k , c , t n + k ) − z t n + k \large \Psi(z_{t_{n+k}}, t_{n+k}, t_n, c)=\frac{\alpha_{t_n}}{\alpha_{t_{n+k}}}z_{t_{n+k}}-\sigma_{t_n}\left(\frac{\sigma_{t_{n+k}}\alpha_{t_n}}{\alpha_{t_{n+k}}\sigma_{t_n}}-1\right)\hat{\epsilon}_{\theta}(z_{t_{n+k}},c,t_{n+k})-z_{t_{n+k}} Ψ(ztn+k,tn+k,tn,c)=αtn+kαtnztn+kσtn(αtn+kσtnσtn+kαtn1)ϵ^θ(ztn+k,c,tn+k)ztn+k

再加入CFGskipping-step之后,LCM的训练过程用如下算法所示:
【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa,论文阅读,AIGC

多步采样算法如下:
【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa,论文阅读,AIGC

Latent Consistency Fine-tuing for Customized Dataset

全量微调算法:
【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa,论文阅读,AIGC

Experiment

测试数据集使用 LAION-Aesthetic-6+ 和 LAION-Aesthetic-6.5+,teacher model 是 Stable Diffusion-v2.1.

【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa,论文阅读,AIGC

LCM的推理步数在 1 1 1 4 4 4步的时候效果会比其他 baseline 方法好. 因为DPMDPM++算实践中很常用的 ODE Solver,正常使用时推理步数在 20 20 20以上. 所以综合速度和质量,LCM表现不错.

训练时间 32 A100 GPU Hours

LCM-LoRA

【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa,论文阅读,AIGC

原理:在原本的 Latent Diffusion Model (LDM) 中,可以使用 LoRa 训练一个额外结构附加到模型的 TextEncoder 和 Unet 中,做到模型的风格迁移. 即图中所示的 τ ′ \mathbb{\tau}' τ,它是原模型微调后额外结构的参数向量. LCM的 backbone 和被它蒸馏模型的 backbone 结构是一致的,所以LCD过程也可以视作对原模型的微调,所以也可以利用 LoRa,在初始化 student Unet 之后,整个蒸馏过程只训练 LoRa 引入的额外结构,也就是获得 τ L C M \mathbb{\tau}_{\mathrm{LCM}} τLCM. 理论上可以结合 τ ′ \mathbb{\tau}' τ,最终做到既能加速生成,又能风格迁移.

LCD过程仅微调 LoRa,收敛更快,训练消耗显著降低.文章来源地址https://www.toymoban.com/news/detail-795055.html

到了这里,关于【论文阅读】Latent Consistency Models (LDMs)、LCM-LoRa的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文《LoRA: Low-Rank Adaptation of Large Language Models》阅读

    今天带来的是由微软Edward Hu等人完成并发表在ICLR 2022上的论文《LoRA: Low-Rank Adaptation of Large Language Models》,论文提出了大模型 tuning 框架 LoRA ( Lo w- R ank A daptation)。 论文地址:https://openreview.net/pdf?id=nZeVKeeFYf9 附录下载地址:https://openreview.net/attachment?id=nZeVKeeFYf9name=supplementa

    2024年02月11日
    浏览(38)
  • [论文阅读笔记77]LoRA:Low-Rank Adaptation of Large Language Models

    题目 论文作者与单位 来源 年份 LoRA: Low-Rank Adaptation of Large Language Models microsoft International Conference on Learning Representations 2021 524 Citations 论文链接:https://arxiv.org/pdf/2106.09685.pdf 论文代码:https://github.com/microsoft/LoRA 研究主题 问题背景 核心方法流程 亮点 数据集 结论 论文类型 关

    2024年02月06日
    浏览(39)
  • 【论文&代码阅读】LORA: LOW-RANK ADAPTATION OF LARGE LAN- GUAGE MODELS

    最近很多工作好像都绕不开lora,无论是sd还是llm.... 问题:大模型重新训练所有模型参数的完全微调变得不太可行。 lora在做什么 我们提出了低秩自适应,即LoRA,它冻结预先训练的模型权重,并将可训练的秩分解矩阵注入Transformer架构的每一层 为什么work? 学习过的参数化模

    2024年02月10日
    浏览(31)
  • Latent Diffusion(CVPR2022 oral)-论文阅读

    论文: 《High-Resolution Image Synthesis with Latent Diffusion Models》 github: https://github.com/CompVis/latent-diffusion 为了使得DM在有限计算资源下训练,同时保留其生成质量及灵活性,作者将其应用于预训练编解码器的隐空间。基于表征训练扩散模型达到降低计算量及细节保留的最优点。作者

    2024年02月11日
    浏览(29)
  • 【论文简介】Stable Diffusion的基础论文:2112.High-Resolution Image Synthesis with Latent Diffusion Models

    稳定扩散生成模型(Stable Diffusion)是一种潜在的文本到图像扩散模型,能够在给定任何文本输入的情况下生成照片般逼真的图像 Stable Diffusion 是基于 latent-diffusion 并与 Stability AI and Runway合作实现的 paper: High-Resolution Image Synthesis with Latent Diffusion Models 本论文代码 :https://github.co

    2024年02月08日
    浏览(29)
  • High-Resolution Image Synthesis with Latent Diffusion Models 稳定扩散模型论文笔记

    一、研究现状        早期图像生成方法主要是变分自动编码器(Variational Autoencoders, VAEs),该算法利用编码器和解码器以及变分推断的方法学习隐空间到真实图像空间的映射从而完成图像的生成。其优势是特征空间可迁移并且训练较为稳定,但是不容易进行模型评估,当输入

    2024年02月20日
    浏览(32)
  • 【论文阅读】Lora

    概述 目的在原有大模型上进行fine tune,训练个性化模型 idea:将pretrained model参数冻住,额外训练一个module进行调整,最终输出是原始输出+经过module的输出。 技巧:通过低秩分解大大降低了需要训练参数的数量。矩阵分解:对于一个 m ∗ n m*n m ∗ n 的矩阵,若它的秩是r,则可

    2024年02月09日
    浏览(19)
  • 【视频异常检测】Delving into CLIP latent space for Video Anomaly Recognition 论文阅读

    中文题目:视频异常识别的CLIP潜在空间研究 文章信息: 原文链接:https://arxiv.org/abs/2310.02835 源代码:https://github.com/luca-zanella-dvl/AnomalyCLIP 我们介绍了一种新的方法AnomalyCLIP,它首次将大型语言和视觉(LLV)模型(如CLIP)与多实例学习相结合,用于联合视频异常检测和分类。

    2024年04月14日
    浏览(78)
  • 《LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS》论文笔记

    全量参数微调在LLM背景下由“不方便”演变为“不可行|高昂成本”,基于“收敛的模型参数可以压缩到低维空间”的假设: the learned over-parametrized models in fact reside on a low intrinsic dimension. 作者提出LORA(Low Rank Adaptation)方法,其本质如下图所示: h = W x h = Wx h = W x ,其中 x x

    2024年02月13日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包