在使用Pandas的Python中,DataFrame列中的值可以通过使用各种内置函数根据条件进行替换。在本文中,我们将讨论在Pandas中用条件替换数据集列中的值的各种方法。
1. 使用dataframe.loc方法
使用此方法,我们可以使用条件或布尔数组访问一组行或列。如果我们可以访问它,我们也可以操纵值,是的!这是我们的第一个方法,通过pandas中的dataframe.loc[]函数,我们可以访问一个列并使用条件更改其值。
语法: df.loc[ df[“column_name”] == “some_value”, “column_name”] = “value”
注意:您也可以使用其他运算符来构造条件以更改数值。
例子:在此示例中,代码导入Pandas和NumPy库,从保存学生数据的字典(‘Student’)构建DataFrame(‘df’),然后在打印修改后的DataFrame之前将’gender’列的值从“male”更改为“1”。
# Importing the libraries
import pandas as pd
import numpy as np
# data
Student = {
'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
'math score': [50, 100, 70, 80, 75, 40],
'test preparation': ['none', 'completed', 'none', 'completed',
'completed', 'none'],
}
# creating a Dataframe object
df = pd.DataFrame(Student)
# Applying the condition
df.loc[df["gender"] == "male", "gender"] = 1
print(df)
输出
Name gender math score test preparation
0 John 1 50 none
1 Jay 1 100 completed
2 sachin 1 70 none
3 Geetha female 80 completed
4 Amutha female 75 completed
5 ganesh 1 40 none
2. 使用NumPy.where方法
我们将要看到的另一个方法是使用NumPy库。NumPy是一个非常流行的库,用于计算2D和3D数组。它为我们提供了一个非常有用的方法,where()可以访问带有条件的特定行或列。我们还可以使用此函数更改列的特定值。
语法: df[“column_name”] = np.where(df[“column_name”]==”some_value”, value_if_true, value_if_false)
例子:在此示例中,代码导入Pandas和NumPy库,从包含学生数据的名为“student”的字典中构建名为“df”的DataFrame,并使用NumPy np.where函数将“gender”列的值从“female”更改为“0”,将“male”更改为1。然后输出更改后的DataFrame。
# Importing the libraries
import pandas as pd
import numpy as np
# data
student = {
'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
'math score': [50, 100, 70, 80, 75, 40],
'test preparation': ['none', 'completed', 'none', 'completed',
'completed', 'none'],
}
# creating a Dataframe object
df = pd.DataFrame(student)
# Applying the condition
df["gender"] = np.where(df["gender"] == "female", 0, 1)
print(df)
输出
Name gender math score test preparation
0 John 1 50 none
1 Jay 1 100 completed
2 sachin 1 70 none
3 Geetha 0 80 completed
4 Amutha 0 75 completed
5 ganesh 1 40 none
3. 使用mask方法
Pandas masking函数用于将任何行或列的值替换为条件。
语法: df[‘column_name’].mask( df[‘column_name’] == ‘some_value’, value , inplace=True )
例子:在此示例中,代码导入Pandas和NumPy库,从包含学生数据的名为“student”的字典中构建名为“df”的DataFrame,然后使用Pandas mask函数将“gender”列中的值“female”替换为0,然后打印修改后的DataFrame。它还包括一行注释,显示如何有条件地将“math score”列中的值替换为“good”(对于大于或等于60的分数)。
# Importing the libraries
import pandas as pd
import numpy as np
# data
student = {
'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
'math score': [50, 100, 70, 80, 75, 40],
'test preparation': ['none', 'completed', 'none', 'completed',
'completed', 'none'],
}
# creating a Dataframe object
df = pd.DataFrame(student)
# Applying the condition
df['gender'].mask(df['gender'] == 'female', 0, inplace=True)
print(df)
# Try this too
#df['math score'].mask(df['math score'] >=60 ,'good', inplace=True)
输出
Name gender math score test preparation
0 John male 50 none
1 Jay male 100 completed
2 sachin male 70 none
3 Geetha 0 80 completed
4 Amutha 0 75 completed
5 ganesh male 40 none
4. 使用apply()和lambda函数
在这个例子中,我们使用了lamda和apply()函数来根据条件替换列中的值。文章来源:https://www.toymoban.com/news/detail-795182.html
# Importing the libraries
import pandas as pd
import numpy as np
# Data
student = {
'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
'math score': [50, 100, 70, 80, 75, 40],
'test preparation': ['none', 'completed', 'none', 'completed',
'completed', 'none'],
}
# Creating a DataFrame object
df = pd.DataFrame(student)
# Applying the condition using apply and lambda
df['gender'] = df['gender'].apply(lambda x: 0 if x == 'female' else x)
print(df)
输出文章来源地址https://www.toymoban.com/news/detail-795182.html
Name gender math score test preparation
0 John male 50 none
1 Jay male 100 completed
2 sachin male 70 none
3 Geetha 0 80 completed
4 Amutha 0 75 completed
5 ganesh male 40 none
到了这里,关于如何在Pandas中根据条件替换列中的值?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!