Pandas十大练习题,掌握常用方法

这篇具有很好参考价值的文章主要介绍了Pandas十大练习题,掌握常用方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

代码均在Jupter Notebook上完成

Pandas分析练习题

  • 数据集可从此获取:

    链接: https://pan.baidu.com/s/1YGwh3pqxW4OlrQXt-5wgFg?pwd=3znx 提取码: 3znx

简介 数据集
1.分析Chipotle快餐数据 chipotle.tsv
2.分析2012欧洲杯数据 Euro2012_stats.csv
3.分析酒类消费数据 drinks.csv
4.分析1960 - 2014 美国犯罪数据 US_Crime_Rates_1960_2014.csv
5.分析虚拟姓名数据 题内构造数据
6.分析风速数据 wind.data
7.分析泰坦尼克灾难数据 train.csv
8.分析Pokemon数据 练习中手动内置的数据
9.分析Apple公司股价数据 Apple_stock.csv
10.分析Iris纸鸢花数据 iris.csv

1. 获取并了解数据

import pandas as pd
csv_path='./pandas_data/chipotle.tsv'
#1.加载数据
chipo=pd.read_csv(csv_path,sep='\t')
#2.查看数据的前10行
print(chipo.head(10))
print('----------1----------')
#3.查看数据有多少列
print(chipo.shape[1])
print('----------2----------')
#4.打印全部列名
print(chipo.columns)
print('----------3----------')
#5. 查看数据集索引
print(chipo.index)
print('----------4----------')
#6. 查看下单数量最多的商品
c = chipo[['item_name', 'quantity']].groupby(['item_name'], as_index=False).agg({'quantity': sum})
c.sort_values(by='quantity',ascending=False,inplace=True)
print(c.head(1))
print('----------5----------')

#7. 查看有多少种商品 中已经对商品名称进行去重,因此只需要记录商品名称个数即可
print(c['quantity'].count())
#7.1 方法2
print(chipo['item_name'].nunique())
print('----------6----------')
#8. 在choice_description中,下单次数最多的商品是什么?
print(chipo['choice_description'].value_counts().head(1))
print('----------7----------')
#9. 下单商品总量
print(chipo['quantity'].sum())
#10. 将价格iten_priceabs转换为浮点数
d=lambda x: float(x[1:])
chipo['item_price']=chipo['item_price'].apply(d)
print(chipo['item_price'].dtype)
print('----------8----------')
#11. 计算总收入
chipo['sub_total']=chipo['item_price']*chipo['quantity']
print(chipo['sub_total'].sum())
print('----------9----------')
# 12: 订单总量
print(chipo['order_id'].nunique())

   order_id  quantity                              item_name  \
0         1         1           Chips and Fresh Tomato Salsa   
1         1         1                                   Izze   
2         1         1                       Nantucket Nectar   
3         1         1  Chips and Tomatillo-Green Chili Salsa   
4         2         2                           Chicken Bowl   
5         3         1                           Chicken Bowl   
6         3         1                          Side of Chips   
7         4         1                          Steak Burrito   
8         4         1                       Steak Soft Tacos   
9         5         1                          Steak Burrito   

                                  choice_description item_price  
0                                                NaN     $2.39   
1                                       [Clementine]     $3.39   
2                                            [Apple]     $3.39   
3                                                NaN     $2.39   
4  [Tomatillo-Red Chili Salsa (Hot), [Black Beans...    $16.98   
5  [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou...    $10.98   
6                                                NaN     $1.69   
7  [Tomatillo Red Chili Salsa, [Fajita Vegetables...    $11.75   
8  [Tomatillo Green Chili Salsa, [Pinto Beans, Ch...     $9.25   
9  [Fresh Tomato Salsa, [Rice, Black Beans, Pinto...     $9.25   
----------1----------
5
----------2----------
Index(['order_id', 'quantity', 'item_name', 'choice_description',
       'item_price'],
      dtype='object')
----------3----------
RangeIndex(start=0, stop=4622, step=1)
----------4----------
       item_name  quantity
17  Chicken Bowl       761
----------5----------
50
50
----------6----------
[Diet Coke]    134
Name: choice_description, dtype: int64
----------7----------
4972
float64
----------8----------
39237.02
1834

2. 数据过滤与排序

csv_path2="./pandas_data/Euro2012_stats.csv"
#1:加载数据
euro=pd.read_csv(csv_path2)
print(euro.head())
print('----------1----------')
#2.读取Goals列
print(euro['Goals'])
print('----------2----------')
#3.统计球队数量
print(euro.shape[0])
print('----------3----------')
#4.查看数据集信息
print(euro.info())
print('----------4----------')
#5.将Team、Yellow Cards、Red Cards单独存储到一个数据集
subset=euro[['Team','Yellow Cards','Red Cards']]
print(subset.head())
print('----------5----------')
#6. 对数据集5按Red Cards、Yellow Cards排序
sorted_subset=subset.sort_values(['Red Cards','Yellow Cards'],ascending=False)
print(sorted_subset)
print('----------6----------')
#7.计算黄牌平均值
print(round(subset['Yellow Cards'].mean()))
print('----------7----------')
#8. 找出进球数大于6的球队
print(euro[euro['Goals']>6][['Team','Goals']])
print('----------8----------')
#9. 选取G开头的球队
#方法1 contains方法加正则表达式
print(euro[euro['Team'].str.contains('^G')]['Team'])
#方法2 
print(euro[euro.Team.str.startswith('G')]['Team'])
print('----------9----------')
#10. 选取前7列
print(euro.iloc[:,0:7])
#11. 选取除了最后3列之外的全部列
print(euro.iloc[:,:-3])
#12. 找到英格兰(England)、意大利(Italy)和俄罗斯(Russia)的射正率(Shooting Accuracy)
print(euro.loc[euro['Team'].isin(['England', 'Italy', 'Russia']),['Team', 'Shooting Accuracy']])


             Team  Goals  Shots on target  Shots off target Shooting Accuracy  \
0         Croatia      4               13                12             51.9%   
1  Czech Republic      4               13                18             41.9%   
2         Denmark      4               10                10             50.0%   
3         England      5               11                18             50.0%   
4          France      3               22                24             37.9%   

  % Goals-to-shots  Total shots (inc. Blocked)  Hit Woodwork  Penalty goals  \
0            16.0%                          32             0              0   
1            12.9%                          39             0              0   
2            20.0%                          27             1              0   
3            17.2%                          40             0              0   
4             6.5%                          65             1              0   

   Penalties not scored  ...  Saves made  Saves-to-shots ratio  Fouls Won  \
0                     0  ...          13                 81.3%         41   
1                     0  ...           9                 60.1%         53   
2                     0  ...          10                 66.7%         25   
3                     0  ...          22                 88.1%         43   
4                     0  ...           6                 54.6%         36   

  Fouls Conceded  Offsides  Yellow Cards  Red Cards  Subs on  Subs off  \
0             62         2             9          0        9         9   
1             73         8             7          0       11        11   
2             38         8             4          0        7         7   
3             45         6             5          0       11        11   
4             51         5             6          0       11        11   

   Players Used  
0            16  
1            19  
2            15  
3            16  
4            19  

[5 rows x 35 columns]
----------1----------
0      4
1      4
2      4
3      5
4      3
5     10
6      5
7      6
8      2
9      2
10     6
11     1
12     5
13    12
14     5
15     2
Name: Goals, dtype: int64
----------2----------
16
----------3----------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 35 columns):
 #   Column                      Non-Null Count  Dtype  
---  ------                      --------------  -----  
 0   Team                        16 non-null     object 
 1   Goals                       16 non-null     int64  
 2   Shots on target             16 non-null     int64  
 3   Shots off target            16 non-null     int64  
 4   Shooting Accuracy           16 non-null     object 
 5   % Goals-to-shots            16 non-null     object 
 6   Total shots (inc. Blocked)  16 non-null     int64  
 7   Hit Woodwork                16 non-null     int64  
 8   Penalty goals               16 non-null     int64  
 9   Penalties not scored        16 non-null     int64  
 10  Headed goals                16 non-null     int64  
 11  Passes                      16 non-null     int64  
 12  Passes completed            16 non-null     int64  
 13  Passing Accuracy            16 non-null     object 
 14  Touches                     16 non-null     int64  
 15  Crosses                     16 non-null     int64  
 16  Dribbles                    16 non-null     int64  
 17  Corners Taken               16 non-null     int64  
 18  Tackles                     16 non-null     int64  
 19  Clearances                  16 non-null     int64  
 20  Interceptions               16 non-null     int64  
 21  Clearances off line         15 non-null     float64
 22  Clean Sheets                16 non-null     int64  
 23  Blocks                      16 non-null     int64  
 24  Goals conceded              16 non-null     int64  
 25  Saves made                  16 non-null     int64  
 26  Saves-to-shots ratio        16 non-null     object 
 27  Fouls Won                   16 non-null     int64  
 28  Fouls Conceded              16 non-null     int64  
 29  Offsides                    16 non-null     int64  
 30  Yellow Cards                16 non-null     int64  
 31  Red Cards                   16 non-null     int64  
 32  Subs on                     16 non-null     int64  
 33  Subs off                    16 non-null     int64  
 34  Players Used                16 non-null     int64  
dtypes: float64(1), int64(29), object(5)
memory usage: 4.5+ KB
None
----------4----------
             Team  Yellow Cards  Red Cards
0         Croatia             9          0
1  Czech Republic             7          0
2         Denmark             4          0
3         England             5          0
4          France             6          0
----------5----------
                   Team  Yellow Cards  Red Cards
6                Greece             9          1
9                Poland             7          1
11  Republic of Ireland             6          1
7                 Italy            16          0
10             Portugal            12          0
13                Spain            11          0
0               Croatia             9          0
1        Czech Republic             7          0
14               Sweden             7          0
4                France             6          0
12               Russia             6          0
3               England             5          0
8           Netherlands             5          0
15              Ukraine             5          0
2               Denmark             4          0
5               Germany             4          0
----------6----------
7
----------7----------
       Team  Goals
5   Germany     10
13    Spain     12
----------8----------
5    Germany
6     Greece
Name: Team, dtype: object
5    Germany
6     Greece
Name: Team, dtype: object
----------9----------
                   Team  Goals  Shots on target  Shots off target  \
0               Croatia      4               13                12   
1        Czech Republic      4               13                18   
2               Denmark      4               10                10   
3               England      5               11                18   
4                France      3               22                24   
5               Germany     10               32                32   
6                Greece      5                8                18   
7                 Italy      6               34                45   
8           Netherlands      2               12                36   
9                Poland      2               15                23   
10             Portugal      6               22                42   
11  Republic of Ireland      1                7                12   
12               Russia      5                9                31   
13                Spain     12               42                33   
14               Sweden      5               17                19   
15              Ukraine      2                7                26   

   Shooting Accuracy % Goals-to-shots  Total shots (inc. Blocked)  
0              51.9%            16.0%                          32  
1              41.9%            12.9%                          39  
2              50.0%            20.0%                          27  
3              50.0%            17.2%                          40  
4              37.9%             6.5%                          65  
5              47.8%            15.6%                          80  
6              30.7%            19.2%                          32  
7              43.0%             7.5%                         110  
8              25.0%             4.1%                          60  
9              39.4%             5.2%                          48  
10             34.3%             9.3%                          82  
11             36.8%             5.2%                          28  
12             22.5%            12.5%                          59  
13             55.9%            16.0%                         100  
14             47.2%            13.8%                          39  
15             21.2%             6.0%                          38  
                   Team  Goals  Shots on target  Shots off target  \
0               Croatia      4               13                12   
1        Czech Republic      4               13                18   
2               Denmark      4               10                10   
3               England      5               11                18   
4                France      3               22                24   
5               Germany     10               32                32   
6                Greece      5                8                18   
7                 Italy      6               34                45   
8           Netherlands      2               12                36   
9                Poland      2               15                23   
10             Portugal      6               22                42   
11  Republic of Ireland      1                7                12   
12               Russia      5                9                31   
13                Spain     12               42                33   
14               Sweden      5               17                19   
15              Ukraine      2                7                26   

   Shooting Accuracy % Goals-to-shots  Total shots (inc. Blocked)  \
0              51.9%            16.0%                          32   
1              41.9%            12.9%                          39   
2              50.0%            20.0%                          27   
3              50.0%            17.2%                          40   
4              37.9%             6.5%                          65   
5              47.8%            15.6%                          80   
6              30.7%            19.2%                          32   
7              43.0%             7.5%                         110   
8              25.0%             4.1%                          60   
9              39.4%             5.2%                          48   
10             34.3%             9.3%                          82   
11             36.8%             5.2%                          28   
12             22.5%            12.5%                          59   
13             55.9%            16.0%                         100   
14             47.2%            13.8%                          39   
15             21.2%             6.0%                          38   

    Hit Woodwork  Penalty goals  Penalties not scored  ...  Clean Sheets  \
0              0              0                     0  ...             0   
1              0              0                     0  ...             1   
2              1              0                     0  ...             1   
3              0              0                     0  ...             2   
4              1              0                     0  ...             1   
5              2              1                     0  ...             1   
6              1              1                     1  ...             1   
7              2              0                     0  ...             2   
8              2              0                     0  ...             0   
9              0              0                     0  ...             0   
10             6              0                     0  ...             2   
11             0              0                     0  ...             0   
12             2              0                     0  ...             0   
13             0              1                     0  ...             5   
14             3              0                     0  ...             1   
15             0              0                     0  ...             0   

    Blocks  Goals conceded Saves made  Saves-to-shots ratio  Fouls Won  \
0       10               3         13                 81.3%         41   
1       10               6          9                 60.1%         53   
2       10               5         10                 66.7%         25   
3       29               3         22                 88.1%         43   
4        7               5          6                 54.6%         36   
5       11               6         10                 62.6%         63   
6       23               7         13                 65.1%         67   
7       18               7         20                 74.1%        101   
8        9               5         12                 70.6%         35   
9        8               3          6                 66.7%         48   
10      11               4         10                 71.5%         73   
11      23               9         17                 65.4%         43   
12       8               3         10                 77.0%         34   
13       8               1         15                 93.8%        102   
14      12               5          8                 61.6%         35   
15       4               4         13                 76.5%         48   

    Fouls Conceded  Offsides  Yellow Cards  Red Cards  
0               62         2             9          0  
1               73         8             7          0  
2               38         8             4          0  
3               45         6             5          0  
4               51         5             6          0  
5               49        12             4          0  
6               48        12             9          1  
7               89        16            16          0  
8               30         3             5          0  
9               56         3             7          1  
10              90        10            12          0  
11              51        11             6          1  
12              43         4             6          0  
13              83        19            11          0  
14              51         7             7          0  
15              31         4             5          0  

[16 rows x 32 columns]
       Team Shooting Accuracy
3   England             50.0%
7     Italy             43.0%
12   Russia             22.5%

3. 数据分组

csv_path3="./pandas_data/drinks.csv"
#1:加载数据
drinks=pd.read_csv(csv_path3)
print(drinks)
print('----------1----------')
#2.计算各大洲啤酒平均消耗量
print(drinks.groupby('continent')['beer_servings'].mean())
print('----------2----------')
#3.计算各大洲红酒平均消耗量
print(drinks.groupby('continent')['wine_servings'].mean())
print('----------3----------')
#4.打印出各大洲每种酒类别的消耗平均值
print(drinks.groupby('continent')['beer_servings','spirit_servings','wine_servings'].mean())
print('----------4----------')
#5.打印出各大洲每种酒类别的消耗中位数
print(drinks.groupby('continent')['beer_servings','spirit_servings','wine_servings'].median())
print('----------5----------')
#6. 打印出各大洲对spirit饮品消耗的平均值,最大值和最小值
print(drinks.groupby('continent')['spirit_servings'].agg(['mean', 'min', 'max']))
         country  beer_servings  spirit_servings  wine_servings  \
0    Afghanistan              0                0              0   
1        Albania             89              132             54   
2        Algeria             25                0             14   
3        Andorra            245              138            312   
4         Angola            217               57             45   
..           ...            ...              ...            ...   
188    Venezuela            333              100              3   
189      Vietnam            111                2              1   
190        Yemen              6                0              0   
191       Zambia             32               19              4   
192     Zimbabwe             64               18              4   

     total_litres_of_pure_alcohol continent  
0                             0.0        AS  
1                             4.9        EU  
2                             0.7        AF  
3                            12.4        EU  
4                             5.9        AF  
..                            ...       ...  
188                           7.7        SA  
189                           2.0        AS  
190                           0.1        AS  
191                           2.5        AF  
192                           4.7        AF  

[193 rows x 6 columns]
----------1----------
continent
AF     61.471698
AS     37.045455
EU    193.777778
OC     89.687500
SA    175.083333
Name: beer_servings, dtype: float64
----------2----------
continent
AF     16.264151
AS      9.068182
EU    142.222222
OC     35.625000
SA     62.416667
Name: wine_servings, dtype: float64
----------3----------
           beer_servings  spirit_servings  wine_servings
continent                                               
AF             61.471698        16.339623      16.264151
AS             37.045455        60.840909       9.068182
EU            193.777778       132.555556     142.222222
OC             89.687500        58.437500      35.625000
SA            175.083333       114.750000      62.416667
----------4----------
           beer_servings  spirit_servings  wine_servings
continent                                               
AF                  32.0              3.0            2.0
AS                  17.5             16.0            1.0
EU                 219.0            122.0          128.0
OC                  52.5             37.0            8.5
SA                 162.5            108.5           12.0
----------5----------
                 mean  min  max
continent                      
AF          16.339623    0  152
AS          60.840909    0  326
EU         132.555556    0  373
OC          58.437500    0  254
SA         114.750000   25  302


/var/folders/cr/2fpn8__12377w89ml3mv5ksw0000gn/T/ipykernel_74870/3785898223.py:13: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.
  print(drinks.groupby('continent')['beer_servings','spirit_servings','wine_servings'].mean())
/var/folders/cr/2fpn8__12377w89ml3mv5ksw0000gn/T/ipykernel_74870/3785898223.py:16: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.
  print(drinks.groupby('continent')['beer_servings','spirit_servings','wine_servings'].median())

4. Apply函数

注意:在 Pandas 中,你可以使用 pd.to_datetime 函数将一个包含日期或时间信息的列转换为 datetime64 数据类型。
pd.to_datetime 函数用于将输入的日期、时间、字符串或类似对象转换为 Pandas 中的 datetime64[ns] 类型。以下是该函数的主要参数说明:
语法:
pd.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=False)
主要参数:
arg: 要转换的日期、时间、字符串或类似对象。
errors: 指定在转换失败时的处理方式,可以是 ‘raise’(默认,抛出异常)、‘coerce’(将无法转换的值设为 NaT)或 ‘ignore’(忽略错误)。
dayfirst: 如果为 True,解析的字符串中的日期在前,月份在后。默认为 False。
yearfirst: 如果为 True,解析的字符串中的年份在前,月份在后。默认为 False。
utc: 如果为 True,则返回的时间是 UTC 标准时间。默认为 None。
format: 指定日期字符串的格式,可以提高解析速度。如果未指定,则尝试使用通用解析器。
exact: 如果为 False,允许近似解析,例如将日期范围扩大到有效范围内。默认为 True。
unit: 控制解析结果的时间单位,可以是 ‘D’(日)、‘s’(秒)、‘ms’(毫秒)、‘us’(微秒)、‘ns’(纳秒)。
infer_datetime_format: 如果为 True,尝试推断日期字符串的格式以提高解析速度。默认为 False。
origin: 设置日期的起始点,可以是 ‘unix’(默认,1970-01-01),‘epoch’(1970-01-01),或一个具体的日期字符串。
cache: 如果为 True,则缓存解析后的日期,提高性能。默认为 False。

set_index 是 Pandas 中用于设置 DataFrame 索引的函数。该函数可以将一个或多个列设置为 DataFrame 的索引,或者通过设置 drop 参数保留原始列并将其从 DataFrame 中移除。
作用: 设置 DataFrame 的索引,可以根据指定的列或多列构建一个新的索引。
语法:
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
主要参数说明:
keys: 用于设置索引的列名,可以是单个列名或列名的列表。
drop: 如果为 True,则将设置为索引的列从 DataFrame 中删除,默认为 True。
append: 如果为 True,则将新索引添加到现有索引的末尾,形成多级索引,默认为 False。
inplace: 如果为 True,则在原地修改 DataFrame,否则返回一个新的 DataFrame,默认为 False。
verify_integrity: 如果为 True,则检查新的索引是否唯一。如果新索引中存在重复值,将引发 ValueError,默认为 False。

resample 函数是 Pandas 中用于对时间序列数据进行重新采样的重要工具。它允许你按照指定的时间频率对数据进行聚合、转换或者采样。
主要作用:
聚合和汇总: 将时间序列数据按照指定的时间频率进行分组,然后进行聚合操作,比如求和、平均值等。
转换: 可以对时间序列数据进行转换操作,例如插值、填充缺失值等。
降采样和升采样: 降采样是指将高频率的数据聚合为低频率,而升采样是指将低频率的数据转换为高频率。
语法:
DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)
主要参数说明:
rule: 重新采样的规则,可以是字符串(如 ‘D’ 表示日,‘M’ 表示月)或者 Timedelta 对象。
‘D’: 每天
‘W’: 每周
‘M’: 每月
‘Q’: 每季度
‘A’: 每年
‘AS’: 每年的开始(Annual Start)
how: 聚合函数,例如 ‘sum’、‘mean’ 等。默认为 None,表示使用每个时间窗口的第一个数据。
axis: 指定要操作的轴,默认为 0。
fill_method: 用于升采样时填充缺失值的方法,比如 ‘ffill’(向前填充)或 ‘bfill’(向后填充)。
closed: 控制区间的闭合方式,‘right’ 表示右闭合,‘left’ 表示左闭合,默认为 None。
label: 控制标签的选择,可以是 ‘left’(使用左边界标签)或 ‘right’(使用右边界标签),默认为 None。
convention: 用于区间的开合方式,可以是 ‘start’(默认,表示左闭右开)或 ‘end’(表示左开右闭)。
kind: 指定采样的类型,可以是 ‘timestamp’(时间戳,默认)或 ‘period’(周期)。
loffset: 用于调整采样结果的时间偏移。
limit: 用于降采样时限制填充的连续 NaN 的个数。
base: 用于设置相对周期的基准值。
on: 用于对 DataFrame 进行按列重采样时指定用于采样的列。
level: 用于 MultiIndex 的级别。

idxmax() 是 Pandas 中的一个函数,它返回 Series 或 DataFrame 中最大值所在的索引位置。具体作用如下:
作用: 返回最大值所在的索引位置。
语法:
Series.idxmax(axis=0, skipna=True, *args, **kwargs)
axis: 用于指定轴方向,对于 Series,只能是 0;对于 DataFrame,可以是 0 或 1,默认为 0。
skipna: 控制是否忽略 NaN 值,默认为 True。

csv_path4="./pandas_data/US_Crime_Rates_1960_2014.csv"
#1:加载数据
crime=pd.read_csv(csv_path4)
print(crime.head())
print('----------1----------')
#2.查看数据集信息
print(crime.info())
print('----------2----------')
#3.将Year列数据类型转为datetime64
print(crime['Year'].dtype)
crime['Year']=pd.to_datetime(crime['Year'],format='%Y')
print(crime['Year'].dtype)
print('----------3----------')
#4.将Year设置为数据集索引
crime=crime.set_index('Year',drop=True)
print(crime.head())
print('----------4----------')
#5.删除Total列
#方法1
crime.drop('Total',axis=1,inplace=True)
#方法2
#del crime['Total']
print(crime.head())
print('----------5----------')
#6. 按照Year对数据进行分组求和
crimes=crime.resample('10AS').sum()
population = crime['Population'].resample('10AS').max()
crimes['Population'] = population
print(crimes)
print('----------6----------')
#7.  打印历史最危险的时代
print(crime.idxmax())
   Year  Population    Total  Violent  Property  Murder  Forcible_Rape  \
0  1960   179323175  3384200   288460   3095700    9110          17190   
1  1961   182992000  3488000   289390   3198600    8740          17220   
2  1962   185771000  3752200   301510   3450700    8530          17550   
3  1963   188483000  4109500   316970   3792500    8640          17650   
4  1964   191141000  4564600   364220   4200400    9360          21420   

   Robbery  Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  
0   107840              154320    912100        1855400         328200  
1   106670              156760    949600        1913000         336000  
2   110860              164570    994300        2089600         366800  
3   116470              174210   1086400        2297800         408300  
4   130390              203050   1213200        2514400         472800  
----------1----------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 55 entries, 0 to 54
Data columns (total 12 columns):
 #   Column              Non-Null Count  Dtype
---  ------              --------------  -----
 0   Year                55 non-null     int64
 1   Population          55 non-null     int64
 2   Total               55 non-null     int64
 3   Violent             55 non-null     int64
 4   Property            55 non-null     int64
 5   Murder              55 non-null     int64
 6   Forcible_Rape       55 non-null     int64
 7   Robbery             55 non-null     int64
 8   Aggravated_assault  55 non-null     int64
 9   Burglary            55 non-null     int64
 10  Larceny_Theft       55 non-null     int64
 11  Vehicle_Theft       55 non-null     int64
dtypes: int64(12)
memory usage: 5.3 KB
None
----------2----------
int64
datetime64[ns]
----------3----------
            Population    Total  Violent  Property  Murder  Forcible_Rape  \
Year                                                                        
1960-01-01   179323175  3384200   288460   3095700    9110          17190   
1961-01-01   182992000  3488000   289390   3198600    8740          17220   
1962-01-01   185771000  3752200   301510   3450700    8530          17550   
1963-01-01   188483000  4109500   316970   3792500    8640          17650   
1964-01-01   191141000  4564600   364220   4200400    9360          21420   

            Robbery  Aggravated_assault  Burglary  Larceny_Theft  \
Year                                                               
1960-01-01   107840              154320    912100        1855400   
1961-01-01   106670              156760    949600        1913000   
1962-01-01   110860              164570    994300        2089600   
1963-01-01   116470              174210   1086400        2297800   
1964-01-01   130390              203050   1213200        2514400   

            Vehicle_Theft  
Year                       
1960-01-01         328200  
1961-01-01         336000  
1962-01-01         366800  
1963-01-01         408300  
1964-01-01         472800  
----------4----------
            Population  Violent  Property  Murder  Forcible_Rape  Robbery  \
Year                                                                        
1960-01-01   179323175   288460   3095700    9110          17190   107840   
1961-01-01   182992000   289390   3198600    8740          17220   106670   
1962-01-01   185771000   301510   3450700    8530          17550   110860   
1963-01-01   188483000   316970   3792500    8640          17650   116470   
1964-01-01   191141000   364220   4200400    9360          21420   130390   

            Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  
Year                                                                    
1960-01-01              154320    912100        1855400         328200  
1961-01-01              156760    949600        1913000         336000  
1962-01-01              164570    994300        2089600         366800  
1963-01-01              174210   1086400        2297800         408300  
1964-01-01              203050   1213200        2514400         472800  
----------5----------
            Population   Violent   Property  Murder  Forcible_Rape  Robbery  \
Year                                                                          
1960-01-01   201385000   4134930   45160900  106180         236720  1633510   
1970-01-01   220099000   9607930   91383800  192230         554570  4159020   
1980-01-01   248239000  14074328  117048900  206439         865639  5383109   
1990-01-01   272690813  17527048  119053499  211664         998827  5748930   
2000-01-01   307006550  13968056  100944369  163068         922499  4230366   
2010-01-01   318857056   6072017   44095950   72867         421059  1749809   

            Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  
Year                                                                    
1960-01-01             2158520  13321100       26547700        5292100  
1970-01-01             4702120  28486000       53157800        9739900  
1980-01-01             7619130  33073494       72040253       11935411  
1990-01-01            10568963  26750015       77679366       14624418  
2000-01-01             8652124  21565176       67970291       11412834  
2010-01-01             3764142  10125170       30401698        3569080  
----------6----------
Population           2014-01-01
Violent              1992-01-01
Property             1991-01-01
Murder               1991-01-01
Forcible_Rape        1992-01-01
Robbery              1991-01-01
Aggravated_assault   1993-01-01
Burglary             1980-01-01
Larceny_Theft        1991-01-01
Vehicle_Theft        1991-01-01
dtype: datetime64[ns]

5. 合并数据

#1:构造测试数据
raw_data_1 = {
        'subject_id': ['1', '2', '3', '4', '5'],
        'first_name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
        'last_name': ['Anderson', 'Ackerman', 'Ali', 'Aoni', 'Atiches']}

raw_data_2 = {
        'subject_id': ['4', '5', '6', '7', '8'],
        'first_name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
        'last_name': ['Bonder', 'Black', 'Balwner', 'Brice', 'Btisan']}

raw_data_3 = {
        'subject_id': ['1', '2', '3', '4', '5', '7', '8', '9', '10', '11'],
        'test_id': [51, 15, 15, 61, 16, 14, 15, 1, 61, 16]}

print('----------1----------')
#2.装载数据
data1=pd.DataFrame(raw_data_1,columns=['subject_id', 'first_name', 'last_name'])
print(data1)
data2=pd.DataFrame(raw_data_2,columns=['subject_id', 'first_name', 'last_name'])
print('---------------------')
print(data2)
data3 = pd.DataFrame(raw_data_3, columns=['subject_id', 'test_id'])
print('---------------------')
print(data3)
print('----------2----------')
#3.行维度合并data1、data2
all_data=pd.concat([data1,data2])
print(all_data)
print('----------3----------')
#4.列维度合并data1、data2
all_data2=pd.concat([data1,data2],axis=1)
print(all_data2)
print('----------4----------')
#5.按照subject_id,合并data_all和data3
print(pd.merge(all_data, data3, on='subject_id'))
print('----------5----------')
#6. 按照subject_id,合并data1、data2
print(pd.merge(data1,data2,on='subject_id',how='inner'))
print('----------6----------')
#7. 按照subject_id,合并data1、data2
print(pd.merge(data1, data2, on='subject_id', how='outer'))
----------1----------
  subject_id first_name last_name
0          1       Alex  Anderson
1          2        Amy  Ackerman
2          3      Allen       Ali
3          4      Alice      Aoni
4          5     Ayoung   Atiches
---------------------
  subject_id first_name last_name
0          4      Billy    Bonder
1          5      Brian     Black
2          6       Bran   Balwner
3          7      Bryce     Brice
4          8      Betty    Btisan
---------------------
  subject_id  test_id
0          1       51
1          2       15
2          3       15
3          4       61
4          5       16
5          7       14
6          8       15
7          9        1
8         10       61
9         11       16
----------2----------
  subject_id first_name last_name
0          1       Alex  Anderson
1          2        Amy  Ackerman
2          3      Allen       Ali
3          4      Alice      Aoni
4          5     Ayoung   Atiches
0          4      Billy    Bonder
1          5      Brian     Black
2          6       Bran   Balwner
3          7      Bryce     Brice
4          8      Betty    Btisan
----------3----------
  subject_id first_name last_name subject_id first_name last_name
0          1       Alex  Anderson          4      Billy    Bonder
1          2        Amy  Ackerman          5      Brian     Black
2          3      Allen       Ali          6       Bran   Balwner
3          4      Alice      Aoni          7      Bryce     Brice
4          5     Ayoung   Atiches          8      Betty    Btisan
----------4----------
  subject_id first_name last_name  test_id
0          1       Alex  Anderson       51
1          2        Amy  Ackerman       15
2          3      Allen       Ali       15
3          4      Alice      Aoni       61
4          4      Billy    Bonder       61
5          5     Ayoung   Atiches       16
6          5      Brian     Black       16
7          7      Bryce     Brice       14
8          8      Betty    Btisan       15
----------5----------
  subject_id first_name_x last_name_x first_name_y last_name_y
0          4        Alice        Aoni        Billy      Bonder
1          5       Ayoung     Atiches        Brian       Black
----------6----------
  subject_id first_name_x last_name_x first_name_y last_name_y
0          1         Alex    Anderson          NaN         NaN
1          2          Amy    Ackerman          NaN         NaN
2          3        Allen         Ali          NaN         NaN
3          4        Alice        Aoni        Billy      Bonder
4          5       Ayoung     Atiches        Brian       Black
5          6          NaN         NaN         Bran     Balwner
6          7          NaN         NaN        Bryce       Brice
7          8          NaN         NaN        Betty      Btisan

6. 数据统计

pd.read_table 函数是 Pandas 中用于从文本文件读取数据的函数。该函数的主要作用是将文本数据读取为 DataFrame 对象,方便后续的数据分析和处理。
语法:
pd.read_table(filepath_or_buffer, sep='\t', delimiter=None, header='infer', names=None, index_col=None, usecols=None, engine='c', skiprows=None, nrows=None, skipfooter=0, skip_blank_lines=True, encoding=None, squeeze=False, thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, float_precision=None, parse_dates=False, infer_datetime_format=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, na_values=None, true_values=None, false_values=None, delimiter_whitespace=False, converters=None, dtype=None, use_unsigned=False, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, thousands=',', comment=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, float_precision=None)
主要参数说明:
filepath_or_buffer: 文件路径或文件对象,表示要读取的文本文件。
sep: 列之间的分隔符,默认为制表符 \t。
delimiter: 与 sep 参数功能相同,指定列之间的分隔符。
header: 指定哪一行作为列名,默认为 ‘infer’,表示自动推断。
names: 用于指定列名的列表。
index_col: 指定哪一列作为行索引,可以是列名或列的索引。
usecols: 指定要读取的列,可以是列名或列的索引。
parse_dates: 解析日期的列,可以是列名、列的索引或包含列的列表。
dtype: 指定列的数据类型。
其他参数用于处理文件的格式、编码、缺失值等情况。

import datetime
csv_path6="./pandas_data/wind.data"
#1:加载数据 "\s+"指定分隔符为一个或者多个空格,并且在parse_dates参数可以接受第0,1,2列合并为一个日期时间列
data = pd.read_table(csv_path6, sep="\s+", parse_dates=[[0, 1, 2]])
print(data.head())
print('----------1----------')
#2.修复step1中自动创建索引的错误数据(2061年?)
def fix_year(x):
    year=x.year-100 if x.year > 1989 else x.year
    return datetime.date(year,x.month,x.day)
data['Yr_Mo_Dy']=data['Yr_Mo_Dy'].apply(fix_year)
print(data.head())
print('----------2----------')
#3.将Yr_Mo_Dy设置为索引,类型datetime64[ns]
data['Yr_Mo_Dy']=pd.to_datetime(data['Yr_Mo_Dy'])
data.set_index('Yr_Mo_Dy',inplace=True)
print(data)
print('----------3----------')
#4.统计每个location数据缺失值(每列)
print(data.isnull().sum())
print('----------4----------')
#5.统计每个location数据完整值 data.isnull的每个元素都是布尔值,表示该位置是否缺失,data.isnull().sum()对列求和,得到每列缺失值
print(data.shape[0]-data.isnull().sum())
print('----------5----------')
#6. 计算所有数据平均值
#data.mean()是对每一列取均值,data.mean().mean()对这个包含每个列均值的Series再次取得均值,得到最终结果
print(data.mean().mean())
print('----------6----------')
#7.  创建数据集,存储每个location最小值、最大值、平均值、标准差
loc_stats=pd.DataFrame()
loc_stats['min']=data.min()
loc_stats['max']=data.max()
loc_stats['mean'] = data.mean()
loc_stats['std'] = data.std()
print(loc_stats)
print('----------7----------')
# 8. 创建数据集,存储所有location最小值、最大值、平均值、标准差
day_stats = pd.DataFrame()
day_stats['min'] = data.min(axis=1)
day_stats['max'] = data.max(axis=1)
day_stats['mean'] = data.mean(axis=1)
day_stats['std'] = data.std(axis=1)
print(day_stats.head())
    Yr_Mo_Dy    RPT    VAL    ROS    KIL    SHA   BIR    DUB    CLA    MUL  \
0 2061-01-01  15.04  14.96  13.17   9.29    NaN  9.87  13.67  10.25  10.83   
1 2061-01-02  14.71    NaN  10.83   6.50  12.62  7.67  11.50  10.04   9.79   
2 2061-01-03  18.50  16.88  12.33  10.13  11.17  6.17  11.25    NaN   8.50   
3 2061-01-04  10.58   6.63  11.75   4.58   4.54  2.88   8.63   1.79   5.83   
4 2061-01-05  13.33  13.25  11.42   6.17  10.71  8.21  11.92   6.54  10.92   

     CLO    BEL    MAL  
0  12.58  18.50  15.04  
1   9.67  17.54  13.83  
2   7.67  12.75  12.71  
3   5.88   5.46  10.88  
4  10.34  12.92  11.83  
----------1----------
     Yr_Mo_Dy    RPT    VAL    ROS    KIL    SHA   BIR    DUB    CLA    MUL  \
0  1961-01-01  15.04  14.96  13.17   9.29    NaN  9.87  13.67  10.25  10.83   
1  1961-01-02  14.71    NaN  10.83   6.50  12.62  7.67  11.50  10.04   9.79   
2  1961-01-03  18.50  16.88  12.33  10.13  11.17  6.17  11.25    NaN   8.50   
3  1961-01-04  10.58   6.63  11.75   4.58   4.54  2.88   8.63   1.79   5.83   
4  1961-01-05  13.33  13.25  11.42   6.17  10.71  8.21  11.92   6.54  10.92   

     CLO    BEL    MAL  
0  12.58  18.50  15.04  
1   9.67  17.54  13.83  
2   7.67  12.75  12.71  
3   5.88   5.46  10.88  
4  10.34  12.92  11.83  
----------2----------
              RPT    VAL    ROS    KIL    SHA    BIR    DUB    CLA    MUL  \
Yr_Mo_Dy                                                                    
1961-01-01  15.04  14.96  13.17   9.29    NaN   9.87  13.67  10.25  10.83   
1961-01-02  14.71    NaN  10.83   6.50  12.62   7.67  11.50  10.04   9.79   
1961-01-03  18.50  16.88  12.33  10.13  11.17   6.17  11.25    NaN   8.50   
1961-01-04  10.58   6.63  11.75   4.58   4.54   2.88   8.63   1.79   5.83   
1961-01-05  13.33  13.25  11.42   6.17  10.71   8.21  11.92   6.54  10.92   
...           ...    ...    ...    ...    ...    ...    ...    ...    ...   
1978-12-27  17.58  16.96  17.62   8.08  13.21  11.67  14.46  15.59  14.04   
1978-12-28  13.21   5.46  13.46   5.00   8.12   9.42  14.33  16.25  15.25   
1978-12-29  14.00  10.29  14.42   8.71   9.71  10.54  19.17  12.46  14.50   
1978-12-30  18.50  14.04  21.29   9.13  12.75   9.71  18.08  12.87  12.46   
1978-12-31  20.33  17.41  27.29   9.59  12.08  10.13  19.25  11.63  11.58   

              CLO    BEL    MAL  
Yr_Mo_Dy                         
1961-01-01  12.58  18.50  15.04  
1961-01-02   9.67  17.54  13.83  
1961-01-03   7.67  12.75  12.71  
1961-01-04   5.88   5.46  10.88  
1961-01-05  10.34  12.92  11.83  
...           ...    ...    ...  
1978-12-27  14.00  17.21  40.08  
1978-12-28  18.05  21.79  41.46  
1978-12-29  16.42  18.88  29.58  
1978-12-30  12.12  14.67  28.79  
1978-12-31  11.38  12.08  22.08  

[6574 rows x 12 columns]
----------3----------
RPT    6
VAL    3
ROS    2
KIL    5
SHA    2
BIR    0
DUB    3
CLA    2
MUL    3
CLO    1
BEL    0
MAL    4
dtype: int64
----------4----------
RPT    6568
VAL    6571
ROS    6572
KIL    6569
SHA    6572
BIR    6574
DUB    6571
CLA    6572
MUL    6571
CLO    6573
BEL    6574
MAL    6570
dtype: int64
----------5----------
10.227982360836924
----------6----------
      min    max       mean       std
RPT  0.67  35.80  12.362987  5.618413
VAL  0.21  33.37  10.644314  5.267356
ROS  1.50  33.84  11.660526  5.008450
KIL  0.00  28.46   6.306468  3.605811
SHA  0.13  37.54  10.455834  4.936125
BIR  0.00  26.16   7.092254  3.968683
DUB  0.00  30.37   9.797343  4.977555
CLA  0.00  31.08   8.495053  4.499449
MUL  0.00  25.88   8.493590  4.166872
CLO  0.04  28.21   8.707332  4.503954
BEL  0.13  42.38  13.121007  5.835037
MAL  0.67  42.54  15.599079  6.699794
----------7----------
             min    max       mean       std
Yr_Mo_Dy                                    
1961-01-01  9.29  18.50  13.018182  2.808875
1961-01-02  6.50  17.54  11.336364  3.188994
1961-01-03  6.17  18.50  11.641818  3.681912
1961-01-04  1.79  11.75   6.619167  3.198126
1961-01-05  6.17  13.33  10.630000  2.445356

7. 数据可视化

import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
csv_path7="./pandas_data/train.csv"
#1:加载数据
titantic=pd.read_csv(csv_path7)
print(titantic.head())
print('----------1----------')
#2.设置索引
titantic.set_index('PassengerId',inplace=True)
print(titantic.head())
print('----------2----------')
#3.分别统计男女乘客数量
mal_sum=(titantic['Sex']=='male').sum()
female_sum=(titantic['Sex']=='female').sum()
print(mal_sum,female_sum)
print('----------3----------') 
#4.绘制表示乘客票价、年龄、性别的散点图 hue='Sex'根据性别分别用不同颜色表示三点,fit_reg=false 不显示回归线
lm=sns.lmplot(x='Age',y='Fare',data=titantic,hue='Sex',fit_reg=False)
lm.set(title='Fare x Age')
#获取图的坐标轴对象
axes=lm.axes
#设置横轴范围,将下限设为-5
axes[0,0].set_ylim(-5,)
#设置纵轴范围,将下限设为05,上限85
axes[0,0].set_xlim(-5,85)
plt.show()
print('----------4----------')
#5.统计生还人数
print(titantic['Survived'].sum())

print('----------5----------')
#6. 绘制展示票价的直方图
data=titantic['Fare'].sort_values(ascending=False)
print(data)
binsVal=np.arange(0,600,10)
plt.hist(data,bins=binsVal)
plt.xlabel('Fare')
#纵轴表示价格在某个区间的数据店数量
plt.ylabel('Frequency')
plt.title('Fare Payed Histrogram')
plt.show()
print('----------6----------')
   PassengerId  Survived  Pclass  \
0            1         0       3   
1            2         1       1   
2            3         1       3   
3            4         1       1   
4            5         0       3   

                                                Name     Sex   Age  SibSp  \
0                            Braund, Mr. Owen Harris    male  22.0      1   
1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   
2                             Heikkinen, Miss. Laina  female  26.0      0   
3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   
4                           Allen, Mr. William Henry    male  35.0      0   

   Parch            Ticket     Fare Cabin Embarked  
0      0         A/5 21171   7.2500   NaN        S  
1      0          PC 17599  71.2833   C85        C  
2      0  STON/O2. 3101282   7.9250   NaN        S  
3      0            113803  53.1000  C123        S  
4      0            373450   8.0500   NaN        S  
----------1----------
             Survived  Pclass  \
PassengerId                     
1                   0       3   
2                   1       1   
3                   1       3   
4                   1       1   
5                   0       3   

                                                          Name     Sex   Age  \
PassengerId                                                                    
1                                      Braund, Mr. Owen Harris    male  22.0   
2            Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0   
3                                       Heikkinen, Miss. Laina  female  26.0   
4                 Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0   
5                                     Allen, Mr. William Henry    male  35.0   

             SibSp  Parch            Ticket     Fare Cabin Embarked  
PassengerId                                                          
1                1      0         A/5 21171   7.2500   NaN        S  
2                1      0          PC 17599  71.2833   C85        C  
3                0      0  STON/O2. 3101282   7.9250   NaN        S  
4                1      0            113803  53.1000  C123        S  
5                0      0            373450   8.0500   NaN        S  
----------2----------
577 314
----------3----------

Pandas十大练习题,掌握常用方法,数据分析,python,pandas,python,数据分析

Pandas十大练习题,掌握常用方法,数据分析,python,pandas,python,数据分析

----------4----------
342
----------5----------
PassengerId
259    512.3292
738    512.3292
680    512.3292
89     263.0000
28     263.0000
         ...   
634      0.0000
414      0.0000
823      0.0000
733      0.0000
675      0.0000
Name: Fare, Length: 891, dtype: float64

Pandas十大练习题,掌握常用方法,数据分析,python,pandas,python,数据分析

----------6----------
  • 从此看出船票主要集中在0-100的价格区间

8. 创建数据框

#1. 构造数据
raw_data = {"name": ['Bulbasaur', 'Charmander','Squirtle','Caterpie'],
            "evolution": ['Ivysaur','Charmeleon','Wartortle','Metapod'],
            "type": ['grass', 'fire', 'water', 'bug'],
            "hp": [45, 39, 44, 45],
            "pokedex": ['yes', 'no','yes','no']
            }
pokemon = pd.DataFrame(raw_data)
print(pokemon.head())
print('----------1----------')
#2.修改列排序
pokemon=pokemon[['name','type','hp','evolution','pokedex']]
print(pokemon)
print('----------2----------')
#3.新增place列
pokemon['place']=['park','street','lake','forest']
print(pokemon)
print('----------3----------')
#4.查看每列的数据类型
#方法1
print(pokemon.dtypes)
#方法2
print(pokemon.info())
         name   evolution   type  hp pokedex
0   Bulbasaur     Ivysaur  grass  45     yes
1  Charmander  Charmeleon   fire  39      no
2    Squirtle   Wartortle  water  44     yes
3    Caterpie     Metapod    bug  45      no
----------1----------
         name   type  hp   evolution pokedex
0   Bulbasaur  grass  45     Ivysaur     yes
1  Charmander   fire  39  Charmeleon      no
2    Squirtle  water  44   Wartortle     yes
3    Caterpie    bug  45     Metapod      no
----------2----------
         name   type  hp   evolution pokedex   place
0   Bulbasaur  grass  45     Ivysaur     yes    park
1  Charmander   fire  39  Charmeleon      no  street
2    Squirtle  water  44   Wartortle     yes    lake
3    Caterpie    bug  45     Metapod      no  forest
----------3----------
name         object
type         object
hp            int64
evolution    object
pokedex      object
place        object
dtype: object
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 6 columns):
 #   Column     Non-Null Count  Dtype 
---  ------     --------------  ----- 
 0   name       4 non-null      object
 1   type       4 non-null      object
 2   hp         4 non-null      int64 
 3   evolution  4 non-null      object
 4   pokedex    4 non-null      object
 5   place      4 non-null      object
dtypes: int64(1), object(5)
memory usage: 320.0+ bytes
None

9. 时间序列

is_unique 是 Pandas Series 对象的一个属性,用于检查 Series 中的值是否都是唯一的。具体作用如下:
如果 Series 中的所有值都是唯一的,is_unique 返回 True。
如果 Series 中存在重复的值,is_unique 返回 False。

csv_path9="./pandas_data/Apple_stock.csv"
#1:加载数据
apple =pd.read_csv(csv_path9)
print(apple.head())
print('----------1----------')
#2.查看每列的数据类型
print(apple.dtypes)
print('----------2----------')
#3.将Date转换为datetime类型
apple['Date']=pd.to_datetime(apple['Date'])
print(apple['Date'].dtype)
print('----------3----------')
#4.将Date设置为索引
apple.set_index('Date',inplace=True)
print(apple.head())
print('----------4----------')
#5.查看是否有重复日期
print(apple.index.is_unique)
print('----------5----------')
#6. 将index设置为升序
apple.sort_index(ascending=True)
print('----------6----------')
#7.获取每月的最后一个交易日
#注意B表示Business Day为工作日,M为月份
#last() 是采样的聚合函数,它选择每个时间窗口中的最后一个数据点
apple_month = apple.resample('BM').last()
print(apple_month.head())
print('----------7----------')
#8. 计算数据集中最早日期和最晚日期相差多少天
print((apple.index.max()-apple.index.min()).days)
print('----------8----------')
#9. 计算数据集中一共有多少个月
months_count = apple.resample('M').count()
#方法1
print(months_count.shape[0])
#方法2
print(len(months_count))
print('----------9----------')
#10. 按照时间顺序可视化Adj Close值【绘制苹果股票的调整后收盘价的折线图】
appl_open = apple['Adj Close'].plot(title = "Apple Stock")
#获取折线图所在的 Figure 对象。
fig = appl_open.get_figure()
fig.set_size_inches(13.5, 9)
plt.show()
         Date   Open   High    Low  Close    Volume  Adj Close
0  2014-07-08  96.27  96.80  93.92  95.35  65130000      95.35
1  2014-07-07  94.14  95.99  94.10  95.97  56305400      95.97
2  2014-07-03  93.67  94.10  93.20  94.03  22891800      94.03
3  2014-07-02  93.87  94.06  93.09  93.48  28420900      93.48
4  2014-07-01  93.52  94.07  93.13  93.52  38170200      93.52
----------1----------
Date          object
Open         float64
High         float64
Low          float64
Close        float64
Volume         int64
Adj Close    float64
dtype: object
----------2----------
datetime64[ns]
----------3----------
             Open   High    Low  Close    Volume  Adj Close
Date                                                       
2014-07-08  96.27  96.80  93.92  95.35  65130000      95.35
2014-07-07  94.14  95.99  94.10  95.97  56305400      95.97
2014-07-03  93.67  94.10  93.20  94.03  22891800      94.03
2014-07-02  93.87  94.06  93.09  93.48  28420900      93.48
2014-07-01  93.52  94.07  93.13  93.52  38170200      93.52
----------4----------
True
----------5----------
----------6----------
             Open   High    Low  Close    Volume  Adj Close
Date                                                       
1980-12-31  34.25  34.25  34.13  34.13   8937600       0.53
1981-01-30  28.50  28.50  28.25  28.25  11547200       0.44
1981-02-27  26.50  26.75  26.50  26.50   3690400       0.41
1981-03-31  24.75  24.75  24.50  24.50   3998400       0.38
1981-04-30  28.38  28.62  28.38  28.38   3152800       0.44
----------7----------
12261
----------8----------
404
404
----------9----------

Pandas十大练习题,掌握常用方法,数据分析,python,pandas,python,数据分析文章来源地址https://www.toymoban.com/news/detail-795231.html

10. 删除数据

csv_path10="./pandas_data/iris.csv"
#1:加载数据
iris =pd.read_csv(csv_path10)
print(iris.head())
print('----------1----------')
#2.添加列名称
iris = pd.read_csv(csv_path10, names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
print(iris.head())

print('----------2----------')
#3.查看是否有缺失值
print(iris.isnull().sum())

print('----------3----------')
#4.将列petal_length的第10到19行设置为缺失值
iris.iloc[10:20,2:3]=np.nan
print(iris.head(20))
print('----------4----------')
#5.将缺失值替换为1.0
iris['petal_length'].fillna(1,inplace=True)
print(iris.head(20))
print('----------5----------')
#6.删除class列
#方法1
iris.drop('class',axis=1,inplace=True)
print(iris.head())
#方法2
# del iris['class']
# print(iris.head())
print('----------6----------')
#7.数据集前三行设置为NaN
iris.iloc[0:3,:]=np.nan
print(iris.head())

print('----------7----------')
#8. 删除含有NaN的行
iris=iris.dropna(how='any')
print('----------8----------')
#9. 重置索引
iris.reset_index(drop=True)
print(iris.head())
print('----------9----------')

   5.1  3.5  1.4  0.2  Iris-setosa
0  4.9  3.0  1.4  0.2  Iris-setosa
1  4.7  3.2  1.3  0.2  Iris-setosa
2  4.6  3.1  1.5  0.2  Iris-setosa
3  5.0  3.6  1.4  0.2  Iris-setosa
4  5.4  3.9  1.7  0.4  Iris-setosa
----------1----------
   sepal_length  sepal_width  petal_length  petal_width        class
0           5.1          3.5           1.4          0.2  Iris-setosa
1           4.9          3.0           1.4          0.2  Iris-setosa
2           4.7          3.2           1.3          0.2  Iris-setosa
3           4.6          3.1           1.5          0.2  Iris-setosa
4           5.0          3.6           1.4          0.2  Iris-setosa
----------2----------
sepal_length    0
sepal_width     0
petal_length    0
petal_width     0
class           0
dtype: int64
----------3----------
    sepal_length  sepal_width  petal_length  petal_width        class
0            5.1          3.5           1.4          0.2  Iris-setosa
1            4.9          3.0           1.4          0.2  Iris-setosa
2            4.7          3.2           1.3          0.2  Iris-setosa
3            4.6          3.1           1.5          0.2  Iris-setosa
4            5.0          3.6           1.4          0.2  Iris-setosa
5            5.4          3.9           1.7          0.4  Iris-setosa
6            4.6          3.4           1.4          0.3  Iris-setosa
7            5.0          3.4           1.5          0.2  Iris-setosa
8            4.4          2.9           1.4          0.2  Iris-setosa
9            4.9          3.1           1.5          0.1  Iris-setosa
10           5.4          3.7           NaN          0.2  Iris-setosa
11           4.8          3.4           NaN          0.2  Iris-setosa
12           4.8          3.0           NaN          0.1  Iris-setosa
13           4.3          3.0           NaN          0.1  Iris-setosa
14           5.8          4.0           NaN          0.2  Iris-setosa
15           5.7          4.4           NaN          0.4  Iris-setosa
16           5.4          3.9           NaN          0.4  Iris-setosa
17           5.1          3.5           NaN          0.3  Iris-setosa
18           5.7          3.8           NaN          0.3  Iris-setosa
19           5.1          3.8           NaN          0.3  Iris-setosa
----------4----------
    sepal_length  sepal_width  petal_length  petal_width        class
0            5.1          3.5           1.4          0.2  Iris-setosa
1            4.9          3.0           1.4          0.2  Iris-setosa
2            4.7          3.2           1.3          0.2  Iris-setosa
3            4.6          3.1           1.5          0.2  Iris-setosa
4            5.0          3.6           1.4          0.2  Iris-setosa
5            5.4          3.9           1.7          0.4  Iris-setosa
6            4.6          3.4           1.4          0.3  Iris-setosa
7            5.0          3.4           1.5          0.2  Iris-setosa
8            4.4          2.9           1.4          0.2  Iris-setosa
9            4.9          3.1           1.5          0.1  Iris-setosa
10           5.4          3.7           1.0          0.2  Iris-setosa
11           4.8          3.4           1.0          0.2  Iris-setosa
12           4.8          3.0           1.0          0.1  Iris-setosa
13           4.3          3.0           1.0          0.1  Iris-setosa
14           5.8          4.0           1.0          0.2  Iris-setosa
15           5.7          4.4           1.0          0.4  Iris-setosa
16           5.4          3.9           1.0          0.4  Iris-setosa
17           5.1          3.5           1.0          0.3  Iris-setosa
18           5.7          3.8           1.0          0.3  Iris-setosa
19           5.1          3.8           1.0          0.3  Iris-setosa
----------5----------
   sepal_length  sepal_width  petal_length  petal_width
0           5.1          3.5           1.4          0.2
1           4.9          3.0           1.4          0.2
2           4.7          3.2           1.3          0.2
3           4.6          3.1           1.5          0.2
4           5.0          3.6           1.4          0.2
----------6----------
   sepal_length  sepal_width  petal_length  petal_width
0           NaN          NaN           NaN          NaN
1           NaN          NaN           NaN          NaN
2           NaN          NaN           NaN          NaN
3           4.6          3.1           1.5          0.2
4           5.0          3.6           1.4          0.2
----------7----------
----------8----------
   sepal_length  sepal_width  petal_length  petal_width
3           4.6          3.1           1.5          0.2
4           5.0          3.6           1.4          0.2
5           5.4          3.9           1.7          0.4
6           4.6          3.4           1.4          0.3
7           5.0          3.4           1.5          0.2
----------9----------

到了这里,关于Pandas十大练习题,掌握常用方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据分析 | Pandas 200道练习题,每日10道题,学完必成大神(3)

    使用head()函数查看数据的前几行,可以传入具体的数,默认是5 map和apply函数接受的参数都是一个行数,而且都不会直接改变原数据,都是返回一个新的DataFrame对象 使用groupby()函数进行分组 info()函数 describe() 返回的数据包括,数量,数据的平均值,标准差,最小值,最大值,

    2023年04月18日
    浏览(40)
  • 数据分析 | Pandas 200道练习题,每日10道题,学完必成大神(8)

    本篇文章主要是一些窗口函数的使用,以及一些股票分析中常用的一些方法,日均线的了解与绘制,重采样,布林线指标。本篇文章涉及到的统计学知识较多,比较难以理解,对于统计学的知识作为一名数据分析师是必须要掌握的 接下来的操作是基于上次的数据进行操作,主

    2024年02月13日
    浏览(52)
  • 数据分析 | Pandas 200道练习题,每日10道题,学完必成大神(4)

    本章的十道题与前面的试题相连接,数据集用的同一个数据集一些操作也是基于上一个练习的 本次导包多导入了一个绘图的包,在这里我们只是简单的应用,后面会有详细的讲解用法 数据集没有的可以私信我,也可以直接去我的资源里面找 中位数(Median)又称中值,统计学

    2024年02月05日
    浏览(40)
  • 国际旅游网络的大数据分析(数学建模练习题)

    伴随着大数据时代的到来,数据分析已经深入到现代社会生活中的各个方面。 无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策之前的 重要环节。 山东省应用统计学会是在省民政厅注册的学术类社会组织,于 1989 年成立。 学会是全省目前从事统计调查

    2024年02月11日
    浏览(51)
  • 【Java练习题汇总】《第一行代码JAVA》Java常用类库篇,汇总Java练习题——Optional类、包装类、可变字符串支持类、Runtime类、System类、数学运算类、日期时间处理...

    一、填空题 在 java.lang 包中提供了两个字符串类,分别是________ 和________ 。这两个类都是________ 接口的子类,字符串类提供的求字符串长度的方法是________________ 。 Java 提供的两个大数操作类是________ 和________ 。 对象克隆方法是________ 类提供的,方法名称是________________ ,对

    2024年02月16日
    浏览(52)
  • 【业务数据分析】——十大常用数据分析方法

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+  目录 一、数据分析方法 二、营销管理方法论 1、SWOT分析 2、PEST分析 3、

    2023年04月22日
    浏览(41)
  • 【Java练习题汇总】《第一行代码JAVA》综合测试三,汇总Java练习题

    线程的启动方法是( )。 A. run() B. start() C. begin() D. accept() Thread 类提供表示线程优先级的静态常量,代表普通优先级的静态常量是( )。 A. MAX_PRIORITY B. MIN_PRIORITY C. NORMAL_PRIORITY D. NORM_PRIORITY 设置线程优先级的方法是( )。 A. setPriority() B. getPriority() C. getName() D. setName() 下面 ( )方法是

    2024年02月14日
    浏览(46)
  • 循环结构(含练习题)

    当循环次数或范围确定时,多用for循环,反之多用while循环 循环结构一般由四部分组成: 初始化语句,在循环开始最初执行,并且只执行一次 条件判断、步进语句、循环体 for循环,循环体可以执行零次或多次 每执行一次循环体,就会执行一次步进语句 foreach循环,JDK 5 新特

    2024年02月19日
    浏览(38)
  • 树状数组练习题

    为什么大佬们一眼看出是树状数组呢? 不是一眼看出树状数组,而是 要把 【找两个相邻的最小值之间还有几个数没删掉】 的问题转变成动态区间和问题,这个转化过程才是最重要的 , 至于你用什么数据结构求动态区间和是次要的,很多数据结构都能做,最常用的树状数组

    2024年02月03日
    浏览(39)
  • python文件练习题

    【问题描述】 从一个文本文件内读入任意多个学生的分数,求出最高分,最低分和平均分存入文件result.txt内。 【输入形式】 一个文件,文件中分数之间由换行隔开,输入的文件名为grade.txt。输入的分数都是整数。 【输出形式】 计算出grade.txt中所有分数的最高分,最低分和

    2024年02月03日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包