图解cross attention

这篇具有很好参考价值的文章主要介绍了图解cross attention。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 英文参考链接:

https://vaclavkosar.com/ml/cross-attention-in-transformer-architecture

交叉注意力与自我注意力 

除了输入,cross-attention 计算与self-attention相同。交叉注意力不对称地组合了两个相同维度的独立嵌入序列,相比之下,自注意力输入是一个单一的嵌入序列。其中一个序列用作查询输入,而另一个用作键和值输入。SelfDoc 中的替代交叉注意力,使用来自一个序列的查询和值,以及来自另一个序列的键。

前馈层与交叉注意力相关,除了前馈层确实使用 softmax 并且其中一个输入序列是静态的。 Augmenting Self-attention with Persistent Memory 论文表明,前馈层计算与自注意力相同。

cross attention,算法,深度学习算法,机器学习,人工智能,深度学习

cross attention,算法,深度学习算法,机器学习,人工智能,深度学习 

 

 cross attention,算法,深度学习算法,机器学习,人工智能,深度学习

交叉注意力实现

查看Diffusers 库中的CrossAttention 实现,它可以使用Stable Diffusion生成图像。在这种情况下,交叉注意力用于调节 UNet 层内的转换器,并带有图像生成的文本提示。构造函数显示,我们如何也可以有不同的维度,如果您使用调试器单步执行,您还将看到两种模式之间的不同序列长度


 文章来源地址https://www.toymoban.com/news/detail-795429.html

到了这里,关于图解cross attention的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习强基计划9-1:图解匹配追踪(MP)与正交匹配追踪(OMP)算法

    机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。强基计划实现从理论到实践的全面覆盖,由本人亲自从底层编

    2024年02月09日
    浏览(66)
  • Self-Attention && Cross-Attention

    transformer的细节到底是怎么样的?Transformer 连环18问! 4.1  从功能角度,Transformer Encoder的核心作用是提取特征,也有使用Transformer Decoder来提取特征。例如,一个人学习跳舞,Encoder是看别人是如何跳舞的,Decoder是将学习到的经验和记忆,展现出来 4.2  从结构角度,如图5所示

    2024年02月16日
    浏览(34)
  • 深度学习:交叉验证(Cross Validation)

    首先,交叉验证的目的是为了让被评估的模型达到最优的泛化性能,找到使得模型泛化性能最优的超参值。在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。 目前在一些论文里倒是没有特别强调这样的操作,很多研究使用的都是第一种:简单交叉验

    2024年02月02日
    浏览(41)
  • 机器学习/深度学习常见算法实现(秋招版)

    包括BN层、卷积层、池化层、交叉熵、随机梯度下降法、非极大抑制、k均值聚类等秋招常见的代码实现。

    2024年02月17日
    浏览(43)
  • 【科研】浅学Cross-attention?

    Cross-Attention in Transformer Architecture  最近,CrossViT让我所有思考,这种能过够跨膜态的模型构建?浅学一下吧! 目录 1.Cross attention概念 2.Cross-attention vs Self-attention  3.Cross-attention算法  4.Cross-Attention 案例-感知器IO Transformer架构中混合两种不同嵌入序列的注意机制 两个序列 必须具

    2024年02月04日
    浏览(49)
  • 机器学习&&深度学习——随机梯度下降算法(及其优化)

    在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优

    2024年02月15日
    浏览(43)
  • 大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

    针对模型的拟合,这里引入两个概念:过拟合,欠拟合。 过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的

    2024年02月04日
    浏览(42)
  • cross attention输入不同维度的矩阵

    在学习使用cross attention的时候我查阅了很多资料,发现里面说的都是cross attention的输入需要是相同维度的矩阵,但是我所需要的是可以处理不同维度数据的cross attention。 cross attention 看了关于cross attention的一些介绍和代码,发现大多都是这样 这里的x和y所输入的维度需要一致

    2024年02月04日
    浏览(37)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(87)
  • 竞赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:

    2024年04月17日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包