day48算法训练|动态规划part09

这篇具有很好参考价值的文章主要介绍了day48算法训练|动态规划part09。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

198.打家劫舍

1. dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

2.递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

3. 初始化

由dp公式可知:需要dp[0]=nums[0],与dp[1]=max(nums[0],nums[1]);

4.遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

// 动态规划
class Solution {
	public int rob(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		if (nums.length == 1) return nums[0];

		int[] dp = new int[nums.length];
		dp[0] = nums[0];
		dp[1] = Math.max(dp[0], nums[1]);
		for (int i = 2; i < nums.length; i++) {
			dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
		}

		return dp[nums.length - 1];
	}
}

还可以用滚动数组来优化空间

class Solution {
    public int rob(int[] nums) {
        if (nums.length == 1)  {
            return nums[0];
        }
        // 初始化dp数组
        // 优化空间 dp数组只用2格空间 只记录与当前计算相关的前两个结果
        int[] dp = new int[2];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0],nums[1]);
        int res = 0;
        // 遍历
        for (int i = 2; i < nums.length; i++) {
            res = Math.max((dp[0] + nums[i]) , dp[1] );
            dp[0] = dp[1];
            dp[1] = res;
        }
        // 输出结果
        return dp[1];
    }
}

213.打家劫舍II

与1的区别就是把线性问题变成了环形的问题

环形问题我可以再拆成线性问题

对于一个数组,成环的话主要有如下三种情况:来源:代码随想录

  • 情况一:考虑不包含首尾元素

day48算法训练|动态规划part09,算法,动态规划

  • 情况二:考虑包含首元素,不包含尾元素

day48算法训练|动态规划part09,算法,动态规划

  • 情况三:考虑包含尾元素,不包含首元素

day48算法训练|动态规划part09,算法,动态规划

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了

class Solution {
    public int rob(int[] nums) {
        if (nums == null || nums.length == 0)
            return 0;
        int len = nums.length;
        if (len == 1)
            return nums[0];
        return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
    }

    int robAction(int[] nums, int start, int end) {
        int x = 0, y = 0, z = 0;
        for (int i = start; i < end; i++) {
            y = z;
            z = Math.max(y, x + nums[i]);
            x = y;
        }
        return z;
    }
}

337.打家劫舍 III 代码随想录

结合数组递归的后序遍历,内存储存,来实现动态规划

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

关键是要讨论当前节点抢还是不抢

这道题目算是树形dp的入门题目,因为是在树上进行状态转移

以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

1. 递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组

在递归的过程中,系统栈会保存每一层递归的参数,可以标记每个节点的状态

2.终止条件

如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

3. 遍历顺序

后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

4.单层递归的逻辑

相当于是两种转移状态

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}

其实后序遍历,也就决定了dp的遍历顺序,是从树的下方往上遍历,先求得下方节点的状态值,才能接着去得到他的根节点的状态数组

5. 举例推导dp数组

day48算法训练|动态规划part09,算法,动态规划

所谓树形DP就是在树上进行递归公式的推导文章来源地址https://www.toymoban.com/news/detail-795446.html

到了这里,关于day48算法训练|动态规划part09的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法训练day41|动态规划 part03(LeetCode343. 整数拆分、96.不同的二叉搜索树)

    题目链接🔥🔥 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于

    2024年02月10日
    浏览(39)
  • day44代码训练|动态规划part06

    完全背包和01背包问题唯一不同的地方就是,每种物品有无限件 。 1. dp数组的含义 dp[i][j] 0-i物品,重量为j的容量时,最大的价值 2. 递推公式 dp[i][j] = max(dp[i-1][j],dp[i][j-weight[i]]+value[i]); 两种状态,不用物品i的话,直接是用dp[i-1][j] 选用物品的话,为了重复使用物品i,其实是

    2024年02月03日
    浏览(35)
  • Day48 算法记录|动态规划15 (子序列)

    这道题和1143最长公共字串相同 dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。 方法二 双指针 dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。 这个把递推讲的很详细 初始化: 状态方程: 相同的情况:

    2024年02月15日
    浏览(32)
  • 代码随想录算法训练51 | 动态规划part12

    本题加了一个冷冻期,状态就多了,有点难度,大家要把各个状态分清,思路才能清晰  视频讲解: 动态规划来决定最佳时机,这次有冷冻期!| LeetCode:309.买卖股票的最佳时机含冷冻期_哔哩哔哩_bilibili 代码随想录 相对122.买卖股票的最佳时机II ,本题只需要在计算卖出操

    2024年01月18日
    浏览(54)
  • 算法基础复盘笔记Day09【动态规划】—— 背包问题

    ❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于 Java后端开发 ,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得 关注 、 点赞 、 收藏 、 评论 ⭐️⭐️⭐️ 📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉 1. 题目

    2023年04月22日
    浏览(46)
  • Day 42 算法记录|动态规划 09 (打家劫舍)

    1.dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。 2.dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]); 3.初始化,dp[0] 和 dp[1],dp[0] 一定是 nums[0],dp[1] = max(nums[0], nums[1]); 3.遍历顺序,dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历! 进一步对滚动数组

    2024年02月15日
    浏览(34)
  • java算法day45 | 动态规划part07 ● 70. 爬楼梯 (进阶) ● 322. 零钱兑换 ● 279.完全平方数

    题目描述: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 = m n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 输入描述:输入共一行,包含两个正整数,分别表示n, m 输出描述:输出一个整数,表示爬到楼顶的方法数

    2024年04月14日
    浏览(54)
  • Day 48 动态规划 9

    代码随想录  1. 思路 本体是非常简单的动态规划问题,dp[i]就代表0-i这些家可以抢劫到的最大金额,分两种情况进行讨论。一个是抢当前的不抢之前的,一个是不抢当前的。代码如下: 代码随想录 1. 思路 这道题也很简单,分解成0~n-1以及1~n这两个区间即可,分别比较。

    2024年01月24日
    浏览(31)
  • 算法训练Day39:62.不同路径 63. 不同路径 II 动态规划

    Category Difficulty Likes Dislikes ContestSlug ProblemIndex Score algorithms Medium (67.70%) 1746 0 - - 0 Tags Companies 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

    2023年04月25日
    浏览(44)
  • Day 47 动态规划 part13

    3道题目 300. 最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组 dp[i]被设置为以nums[i]为结尾的最长递增子序列长度。 思路跟上题一致,甚至还更简单,因为只需要看前一个位置和当前位置的关系就好。 这道题相当于两道第一题重叠考虑,设置dp[i][j]为以i-1为结尾的

    2024年02月07日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包