198.打家劫舍
1. dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
2.递推公式
决定dp[i]的因素就是第i房间偷还是不偷。
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
3. 初始化
由dp公式可知:需要dp[0]=nums[0],与dp[1]=max(nums[0],nums[1]);
4.遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
// 动态规划
class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) return 0;
if (nums.length == 1) return nums[0];
int[] dp = new int[nums.length];
dp[0] = nums[0];
dp[1] = Math.max(dp[0], nums[1]);
for (int i = 2; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
}
return dp[nums.length - 1];
}
}
还可以用滚动数组来优化空间
class Solution {
public int rob(int[] nums) {
if (nums.length == 1) {
return nums[0];
}
// 初始化dp数组
// 优化空间 dp数组只用2格空间 只记录与当前计算相关的前两个结果
int[] dp = new int[2];
dp[0] = nums[0];
dp[1] = Math.max(nums[0],nums[1]);
int res = 0;
// 遍历
for (int i = 2; i < nums.length; i++) {
res = Math.max((dp[0] + nums[i]) , dp[1] );
dp[0] = dp[1];
dp[1] = res;
}
// 输出结果
return dp[1];
}
}
213.打家劫舍II
与1的区别就是把线性问题变成了环形的问题
环形问题我可以再拆成线性问题
对于一个数组,成环的话主要有如下三种情况:来源:代码随想录
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了
class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int len = nums.length;
if (len == 1)
return nums[0];
return Math.max(robAction(nums, 0, len - 1), robAction(nums, 1, len));
}
int robAction(int[] nums, int start, int end) {
int x = 0, y = 0, z = 0;
for (int i = start; i < end; i++) {
y = z;
z = Math.max(y, x + nums[i]);
x = y;
}
return z;
}
}
337.打家劫舍 III 代码随想录
结合数组递归的后序遍历,内存储存,来实现动态规划
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
关键是要讨论当前节点抢还是不抢
这道题目算是树形dp的入门题目,因为是在树上进行状态转移
以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解
1. 递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组
在递归的过程中,系统栈会保存每一层递归的参数,可以标记每个节点的状态
2.终止条件
如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
3. 遍历顺序
后序遍历。 因为要通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
4.单层递归的逻辑
相当于是两种转移状态
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}
其实后序遍历,也就决定了dp的遍历顺序,是从树的下方往上遍历,先求得下方节点的状态值,才能接着去得到他的根节点的状态数组
5. 举例推导dp数组
文章来源:https://www.toymoban.com/news/detail-795446.html
所谓树形DP就是在树上进行递归公式的推导文章来源地址https://www.toymoban.com/news/detail-795446.html
到了这里,关于day48算法训练|动态规划part09的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!