[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body

这篇具有很好参考价值的文章主要介绍了[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.

食用方法
如何表达刚体在空间中的位置与姿态
姿态参数如何表达?不同表达方式直接的转换关系?
旋转矩阵?转换矩阵?有什么意义和性质?转置代表什么?
如何表示连续变换?——与RPY有关
齐次坐标的意义——简化公式?
务必自己推导全部公式,并理解每个符号的含义


刚体的位形可以用六个独立(坐标)参数完全描述三个位置参数用于描述运动刚体上运动坐标系 { M } \left\{ M \right\} { M}原点 M M M在固定坐标系 { F } \left\{ F \right\} { F}的投影参数,三个转动参数用于描述运动坐标系 { M } \left\{ M \right\} { M}的基矢量相对于固定坐标系 { F } \left\{ F \right\} { F}的基矢量的姿态,而描述这种姿态的变换,则是需要确定矩阵 [ Q M F ] \left[ Q_{\mathrm{M}}^{F} \right] [QMF]

因此为描述空间坐标系中任意一刚体的运动状态,首先需要描述刚体的位置矢量 R ⃗ M F \vec{R}_{\mathrm{M}}^{F} R MF姿态矩阵 [ Q F M ] \left[ Q_{\mathrm{F}}^{M} \right] [QFM](表述为:坐标系 { M } \left\{ M \right\} { M}的基矢量在坐标系 { F } \left\{ F \right\} { F}下的线性表达,描述了 { M } \left\{ M \right\} { M}的姿态,同时也可理解为将坐标系 { F } \left\{ F \right\} { F}通过姿态矩阵进行旋转变换,得到新的坐标系 { M } \left\{ M \right\} { M}

广义参考系坐标 Reference Coordinates:为方便后续动力学方程的建立与推导,常用广义坐标矢量参数 q ⃗ M F \vec{q}_{\mathrm{M}}^{F} q MF来描述运动刚体的形位,其中:
q ⃗ M F = [ R ⃗ M F , θ ⃗ M F ] \vec{q}_{\mathrm{M}}^{F}=\left[ \vec{R}_{\mathrm{M}}^{F},\vec{\theta}_{\mathrm{M}}^{F} \right] q MF=[R MF,θ MF]

  • θ ⃗ M F \vec{\theta}_{\mathrm{M}}^{F} θ MF可以用多种方法来描述(通常包含3或4个角度参数 ),这些角度参数用于描述姿态矩阵(旋转矩阵) [ Q F M ] \left[ Q_{\mathrm{F}}^{M} \right] [QFM]

对于刚体的运动状态而言,其运动坐标系的原点 M M M的位置矢量 R ⃗ M F \vec{R}_{\mathrm{M}}^{F} R MF表示与点的运动状态表示相同,因此需要探究如何用角度参数来描述转换矩阵。

3. 转换矩阵与旋转矩阵——刚体的位置与姿态描述

转换矩阵用于表述两个坐标系 { A : ( i ⃗ A , j ⃗ A , k ⃗ A ) } \left\{ A:\left( \vec{i}^A,\vec{j}^A,\vec{k}^A \right) \right\} { A:(i A,j A,k A)} { B : ( i ⃗ B , j ⃗ B , k ⃗ B ) } \left\{ B:\left( \vec{i}^B,\vec{j}^B,\vec{k}^B \right) \right\} { B:(i B,j B,k B)}的基矢量之间的转换关系:
[ i ⃗ B j ⃗ B k ⃗ B ] = [ Q B A ] T [ i ⃗ A j ⃗ A k ⃗ A ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] =\left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] i Bj Bk B =[QBA]T i Aj Ak A

其中,转换矩阵 [ Q B A ] T \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}} [QBA]T表示坐标系 { B } \left\{ B \right\} { B}的基矢量在坐标系 { A } \left\{ A \right\} { A}中的表达,可将向量在不同的基矢量坐标系下进行表示。特殊的:若将基矢量替换成对应基矢量的向量投影,则可以表示为:两个原点重合的坐标系中,对同一向量的不同表达的转换关系;

上式也可以理解为:对坐标系 { A : ( i ⃗ A , j ⃗ A , k ⃗ A ) } \left\{ A:\left( \vec{i}^A,\vec{j}^A,\vec{k}^A \right) \right\} { A:(i A,j A,k A)}进行了 [ Q A B ] \left[ Q_{\mathrm{A}}^{B} \right] [QAB]的旋转(从坐标系 { A } \left\{ A \right\} { A}旋转为坐标系 { B } \left\{ B \right\} { B}的姿态) ,此时将转换矩阵与向量的运算理解为张量与向量的运算,即得到了旋转后的向量在坐标系 { A } \left\{ A \right\} { A}中的表达,此时实际上,对原始坐标系 { A } \left\{ A \right\} { A}的基矢量同样进行了旋转,形成了新坐标系 { B } \left\{ B \right\} { B}的基矢量,其仍在坐标系 { A } \left\{ A \right\} { A}下表达。

[ r ′ 1 A r ′ 2 A r ′ 3 A ] = [ Q ] [ r 1 A r 2 A r 3 A ] \left[ \begin{array}{c} {r^{\prime}}_{1}^{A}\\ {r^{\prime}}_{2}^{A}\\ {r^{\prime}}_{3}^{A}\\ \end{array} \right] =\left[ Q \right] \left[ \begin{array}{c} r_{1}^{A}\\ r_{2}^{A}\\ r_{3}^{A}\\ \end{array} \right] r1Ar2Ar3A =[Q] r1Ar2Ar3A

目前,人们采用不同的角度参数 θ ⃗ \vec{\theta} θ 来对旋转矩阵进行描述

  • Representing an orientation —— from definition
    将原矢量进行旋转变换,得到该坐标系下新矢量的坐标投影参数:
    R ⃗ p ′ F = [ Q ] R ⃗ p F \vec{R}_{\mathrm{p}^{\prime}}^{F}=\left[ Q\right] \vec{R}_{\mathrm{p}}^{F} R pF=[Q]R pF
  • Changing the reference frame
    对坐标系进行转换,基于坐标系 { A } \left\{ A \right\} { A}中的该矢量的坐标投影参数 R ⃗ p A \vec{R}_{\mathrm{p}}^{A} R pA,得到该矢量在坐标系 { B } \left\{ B \right\} { B}中的坐标投影参数 ( R ⃗ p A ) B \left( \vec{R}_{\mathrm{p}}^{A} \right) ^B (R pA)B
    ( R ⃗ p A ) B = [ Q A B ] R ⃗ p A \left( \vec{R}_{\mathrm{p}}^{A} \right) ^B=\left[ Q_{\mathrm{A}}^{B} \right] \vec{R}_{\mathrm{p}}^{A} (R pA)B=[QAB]R pA

3.1 轴角变换

[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body,运动学与动力学,足式机器人,机器人
假设两个坐标系 { A } \left\{ A \right\} { A} { B } \left\{ B \right\} { B}的原点重合,其中坐标系 { B } \left\{ B \right\} { B}为坐标系 { A } \left\{ A \right\} { A}绕轴 v ⃗ F \vec{v}^F v F(单位向量)旋转 θ \theta θ所得到的。因此对于坐标系 { A } \left\{ A \right\} { A}中的点 P P P,经过转换后,得到点 P ′ P^{\prime} P,此时点 P ′ P^{\prime} P在坐标系 { B } \left\{ B \right\} { B}中的矢量投影与点 P P P在坐标系 { A } \left\{ A \right\} { A}中的投影分量相同。而在转换过程中,点 P ′ P^{\prime} P在坐标系 { A } \left\{ A \right\} { A}中的表达发生变化,即有: [ P ′ 1 B , P ′ 2 B , P ′ 2 B ] = [ P 1 A , P 2 A , P 2 A ] \left[ {P^{\prime}}_{1}^{\mathrm{B}},{P^{\prime}}_{2}^{\mathrm{B}},{P^{\prime}}_{2}^{\mathrm{B}} \right] =\left[ P_{1}^{A},P_{2}^{A},P_{2}^{A} \right] [P1B,P2B,P2B]=[P1A,P2A,P2A],因此对式 [ i ⃗ B j ⃗ B k ⃗ B ] = [ Q B A ] T [ i ⃗ A j ⃗ A k ⃗ A ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] =\left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] i Bj Bk B =[QBA]T i Aj Ak A 有:
[ i ⃗ B j ⃗ B k ⃗ B ] T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ ( [ Q B A ] T [ i ⃗ A j ⃗ A k ⃗ A ] ) T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ i ⃗ A j ⃗ A k ⃗ A ] T [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ P 1 A P 2 A P 3 A ] = [ P ′ 1 B P ′ 2 B P ′ 3 B ] \begin{split} &\left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ &\Rightarrow \left( \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] \right) ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ &\Rightarrow \left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ &\Rightarrow \left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] =\left[ \begin{array}{c} {P^{\prime}}_{1}^{\mathrm{B}}\\ {P^{\prime}}_{2}^{\mathrm{B}}\\ {P^{\prime}}_{3}^{\mathrm{B}}\\ \end{array} \right] \end{split} i 文章来源地址https://www.toymoban.com/news/detail-795847.html

到了这里,关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body

    本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有帮助请引用 本文参考: . 食用方法 如何表达刚体在空

    2024年01月17日
    浏览(99)
  • [足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】

    本文仅供学习使用 本文参考: 《机构运动微分几何学分析与综合》-王德伦、汪伟 《微分几何》吴大任 连杆机构中的连杆与连架杆构成运动副,该运动副元素的 特征点 或 特征线 在 机架坐标系 中的 运动轨迹曲线或曲面 称为 约束曲线 或 约束曲面 ,是联系刚体运动与机构

    2024年02月11日
    浏览(50)
  • [足式机器人]Part3 变分法Ch01-1 数学预备知识——【读书笔记】

    本文仅供学习使用 本文参考: 《变分法基础-第三版》老大中 《变分学讲义》张恭庆 《Calculus of Variations of Optimal Control Theory》-变分法和最优控制论-Daneil Liberzon 1.1.1 一元函数的泰勒公式 泰勒中值定理/泰勒定理: 若函数 f ( x ) fleft( x right) f ( x ) 在点 x 0 x_0 x 0 ​ 的某个开区

    2024年02月12日
    浏览(47)
  • 机器人位置运动学

    正运动学 :已知机器人各关节的变量,计算出末端执行器的位置和姿态。 逆运动学 :求解一组关节变量,使机器人末端放置在特定位置并且具有期望的姿态。 运动学方法 利用矩阵建立刚体的位置和姿态,并利用矩阵建立物体的平移和旋转运动表示,研究不同构性机器人(

    2024年02月15日
    浏览(46)
  • 机器人学:(3)机器人运动学

    机器人运动学(Kinematics)是从几何角度描述和研究机器人的位置、速度和加速度随时间的变化规律的科学,它不涉及机器人本体的物理性质和加在其上的力。这里主要介绍机器人运动学的建模方法及逆运动学的求解方法。 机器人运动学问题主要在机器人的工作空间与关节空

    2024年02月07日
    浏览(51)
  • 机器人学基础(三):机器人运动学

    运动学问题是在不考虑引起运动的力和力矩的情况下,描述机械臂的运动。上一篇我们已经讨论了机器人运动方程的表示方法,这一篇将会讨论机器人的DH建模方法。 Denavit-Hartenberg(D-H)模型于1955年首次提出,用于描述机器人连杆和节点之间相互关系。后来逐步完善推导出了

    2024年02月09日
    浏览(53)
  • 工业机器人(六)——运动学分析

      Delta 并联机构具有工作空间大、运动耦合弱、力控制容易和工作速度快等优点,能够实现货物抓取、分拣以及搬运等,在食品、医疗和电子等行业中具有广泛的应用。在结构设计的基础上,本部分通过运动学和动力学分析,为并联机构优化设计提供前期基础,具体内容如

    2024年02月09日
    浏览(47)
  • 基于C#的机器人仿真平台和机器人运动学算法实现

    一、平台搭建 1.利用wpf自带的库进行机器人各关节导入 相关代码段: 导入效果如图: 效果视频: 2.通过正运动学显示机器人当前位置信息 拖动机器人并且实时改变其位置信息: xaml代码部分: 算法部分:  3.功能实现(在X/Y/Z轴上设置一个移动距离,然后机器人自动移动该

    2024年02月16日
    浏览(55)
  • 机器人——正向运动学(Forward Kinematics)与逆向运动学(Inverse Kinematics)

    正向运动学和反向运动学分别是什么意思 正向运动学是指从机器人的关节运动推导出末端执行器的运动的过程,也就是从机器人的关节坐标计算出末端执行器的位置和姿态信息的过程。反向运动学则是指从末端执行器的位置和姿态信息推导出机器人的关节坐标的过程。简单来

    2024年02月16日
    浏览(49)
  • 机器人运动学标定:基于DH建模方法

    作者:桂凯 链接:https://www.zhihu.com/question/401957723/answer/1298513878 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 当然,运动学标定这种很基础的问题,理论已非常成熟了,基于激光或拉线编码器的标定系统也已经商业化了。我们在接

    2024年02月12日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包