用pytorch给深度学习加速:正交与谱归一化技术

这篇具有很好参考价值的文章主要介绍了用pytorch给深度学习加速:正交与谱归一化技术。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

torch.nn参数优化

parametrizations.orthogonal

用途

用法

使用技巧

参数

注意事项

示例代码

parametrizations.spectral_norm

用途

用法

使用技巧

参数

注意事项

示例代码

总结


torch.nn参数优化

parametrizations.orthogonal

这个torch.nn.utils.parametrizations.orthogonal模块是PyTorch库中的一个功能,用于对神经网络中的矩阵或一批矩阵应用正交或酉参数化。这种技术主要用于优化网络权重的表示,使其保持正交或酉性质,从而有助于提高网络的训练稳定性和性能。

用途

  • 保持网络权重的正交性或酉性,以保持稳定的特征提取。
  • 提高模型的训练效率和泛化能力。
  • 在特定应用中,如自编码器或循环神经网络,保持权重的正交性可以防止梯度消失或爆炸。

用法

  1. 选择一个合适的torch.nn模块。
  2. 使用torch.nn.utils.parametrizations.orthogonal来注册权重的正交参数化。

使用技巧

  • 选择适当的orthogonal_map参数("matrix_exp", "cayley", "householder")来优化权重的正交化过程。
  • 在训练过程中,可以通过激活或禁用use_trivialization参数来平衡额外的内存使用和收敛速度。
  • 适用于不同类型的网络结构,但对于特别宽或特别窄的矩阵,选择合适的orthogonal_map更为关键。

参数

  • module: 要注册参数化的nn.Module模块。
  • name: 需要进行正交化的张量的名称,默认为"weight"。
  • orthogonal_map: 正交映射的类型,可以是"matrix_exp", "cayley", "householder"中的一个。
  • use_trivialization: 是否使用动态琐碎化框架,默认为True。

注意事项

  • 确保选择的模块和张量适合进行正交化处理。
  • 正交化过程可能会影响训练速度,因此在对性能要求较高的应用中需谨慎使用。

示例代码

import torch
from torch import nn
from torch.nn.utils.parametrizations import orthogonal

# 创建一个线性层
linear_layer = nn.Linear(20, 40)

# 对线性层的权重应用正交参数化
orth_linear = orthogonal(linear_layer)

# 输出参数化后的线性层
print(orth_linear)

# 验证权重的正交性
Q = orth_linear.weight
print(torch.dist(Q.T @ Q, torch.eye(20)))

这段代码首先创建了一个线性层,然后应用了正交参数化。最后,它验证了权重的正交性,输出应接近于零,表示权重矩阵接近正交。

parametrizations.spectral_norm

torch.nn.utils.parametrizations.spectral_norm 是 PyTorch 框架中的一个模块,用于对给定模块中的参数应用谱归一化。谱归一化是一种正则化技术,主要用于生成对抗网络(GANs)中,以稳定判别器(或称批评者)的训练。这种技术通过降低模型的Lipschitz常数来实现稳定性。

用途

  • 在GANs中稳定判别器的训练。
  • 限制权重矩阵的谱范数,防止模型过度拟合。
  • 改善模型的泛化能力。

用法

  1. 选择一个合适的torch.nn模块。
  2. 使用torch.nn.utils.parametrizations.spectral_norm来注册权重的谱归一化。

使用技巧

  • 选择适当数量的n_power_iterations以平衡计算成本和准确性。
  • 在不同的网络结构和应用场景中尝试不同的eps值以保证数值稳定性。
  • 使用dim参数来适配不同的卷积层。

参数

  • module: 要注册参数化的nn.Module模块。
  • name: 需要进行谱归一化的张量的名称,默认为"weight"。
  • n_power_iterations: 计算谱范数时的幂迭代次数,默认为1。
  • eps: 在计算范数时的数值稳定性常数,默认为1e-12。
  • dim: 对应于输出数量的维度,默认为0,除了对于ConvTranspose{1,2,3}d的实例,这时为1。

注意事项

  • 谱归一化可能会影响模型的训练速度和性能。
  • 如果模型在移除谱归一化时处于训练模式,它将执行额外的幂迭代。如果想避免这种情况,可以在移除之前将模型设置为评估模式。

示例代码

import torch
from torch import nn
from torch.nn.utils.parametrizations import spectral_norm

# 创建一个线性层
linear_layer = nn.Linear(20, 40)

# 对线性层的权重应用谱归一化
snm = spectral_norm(linear_layer)

# 输出参数化后的线性层
print(snm)

# 验证权重的谱范数
print(torch.linalg.matrix_norm(snm.weight, 2))

这段代码首先创建了一个线性层,然后应用了谱归一化。最后,它验证了权重的谱范数,这个值应接近于1,表示权重矩阵已经被归一化。

总结

这篇博客探讨了PyTorch中的两种关键参数优化技术:正交参数化和谱归一化。正交参数化用于优化神经网络的权重矩阵,以保持其正交或酉性质,从而提高网络的训练稳定性和泛化能力。谱归一化则主要用于生成对抗网络(GANs),通过控制权重矩阵的谱范数来稳定判别器的训练。两种技术都是提高模型性能和训练效率的有效工具,适用于多种网络结构和应用场景。博客通过具体的代码示例,展示了如何在PyTorch中实现这些高级参数优化技术。文章来源地址https://www.toymoban.com/news/detail-795995.html

到了这里,关于用pytorch给深度学习加速:正交与谱归一化技术的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习中的批量归一化BN和层归一化LN】BN层(Batch Normalization)和LN层(Layer Normalization)的区别

    归一化(Normalization) 方法 :指的是把 不同维度的特征 (例如序列特征或者图像的特征图等)转换为相同或相似的尺度范围内的方法,比如把数据特征映射到[0, 1]或[−1, 1]区间内,或者映射为服从均值为0、方差为1的标准正态分布。 那为什么要进行归一化? 样本特征由于 来源

    2024年02月14日
    浏览(48)
  • 【Pytorch基础知识】数据的归一化和反归一化

    一张正常的图,或者说是人眼习惯的图是这样的: 但是,为了 神经网络更快收敛 ,我们在深度学习网络过程中 通常需要将读取的图片转为tensor并归一化 (此处的归一化指 transforms .Normalize()操作)输入到网络中进行系列操作。 如果将转成的tensor再直接转为图片,就会变成下

    2023年04月09日
    浏览(84)
  • Pytorch学习笔记(8):正则化(L1、L2、Dropout)与归一化(BN、LN、IN、GN)

     一、正则化之weight_decay(L2正则) 1.1 正则化及相关概念 1.2 正则化策略(L1、L2) (1)L1正则化 (2)L2正则化 1.3 L2正则项——weight_decay 二、正则化之Dropout 2.1 Dropout概念 2.2 nn.Dropout  三、归一化之Batch Normalization(BN层) 3.1 Batch Normalization介绍 3.2 Pytorch的Batch Normalization 1d

    2024年02月04日
    浏览(43)
  • 【机器学习】一文搞懂标准化,归一化,正则化

    对于机器学习中的标准化,归一化和正则化的理解,一直都比较模糊,而且在许多技术书籍中,对于它们的使用基本都是一笔带过,不理解概念的话,就不知具体对数据做了哪些操作。因此,在这里专门对这几个概念做学习与总结。 学习之前,先抛出几个问题: 这几个概念

    2024年02月03日
    浏览(50)
  • 【机器学习】数据预处理 - 归一化和标准化

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 处理数据之前,通常会使用一些转换函数将 「特征数据」 转换成更适合 「

    2024年02月15日
    浏览(55)
  • 【机器学习300问】12、为什么要进行特征归一化?

            当线性回归模型的特征量变多之后,会出现不同的特征量,然而对于那些同是数值型的特征量为什么要做归一化处理呢?         使得不同指标之间具有可比性。例如,分析一个人的身高和体重对健康的影响,如果使用米(m)和于克(kg)作为单位,那么身高特征会在

    2024年01月22日
    浏览(40)
  • 使用阿里云试用Elasticsearch学习:3.3 处理人类语言——归一化词元

    把文本切割成词元(token)只是这项工作的一半。为了让这些词元(token)更容易搜索, 这些词元(token)需要被 归一化(normalization)–这个过程会去除同一个词元(token)的无意义差别,例如大写和小写的差别。可能我们还需要去掉有意义的差别, 让 esta、ésta 和 está 都能用同一个词元(to

    2024年04月14日
    浏览(44)
  • 深入理解机器学习——数据预处理:归一化 (Normalization)与标准化 (Standardization)

    分类目录:《深入理解机器学习》总目录 归一化 (Normalization)和标准化 (Standardization)都是特征缩放的方法。特征缩放是机器学习预处理数据中最重要的步骤之一,可以加快梯度下降,也可以消除不同量纲之间的差异并提升模型精度。 归一化(Normalization)是将一组数据变

    2024年02月08日
    浏览(45)
  • OpenCV-Python学习(17)—— OpenCV 图像像素类型转换与归一化(cv.normalize)

    1. 学习目标 学习 OpenCV 图像像素的类型转换; 学习 OpenCV 归一化函数。 2. OpenCV 图像像素的类型转换 由于【在 OpenCV-Python 中一切图像数据皆 numpy.array】,因此像素的类型转换可以直接使用 numpy 的类型转换方法。 2.1 将像素转换为 float32 2.2 数据输出结果 2.3 图像输出结果 3. 归一

    2024年02月05日
    浏览(68)
  • matlab中数据归一化方法,矩阵归一化

    matlab中数据一行归一化 默认的map范围是[-1, 1],所以如果需要[0, 1],则按这样的格式提供参数 Data1 = mapminmax(lData, 0, 1); 矩阵归一化

    2024年02月12日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包