【C++】STL 算法 ⑪ ( 函数适配器嵌套用法 | modulus 函数对象 - 取模运算 | std::count_if 函数原型 | std::not1 函数原型 )

这篇具有很好参考价值的文章主要介绍了【C++】STL 算法 ⑪ ( 函数适配器嵌套用法 | modulus 函数对象 - 取模运算 | std::count_if 函数原型 | std::not1 函数原型 )。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。





一、函数适配器示例 - 函数适配器正常用法



1、modulus 函数对象 - 取模运算


<functional> 头文件 中 , 预定义了 modulus 函数对象 , 这是一个 二元函数对象 , 在该函数对象类中 , 重写了 函数调用操作符 函数 operator() , 该 预定义函数对象 代码如下 :

// STRUCT TEMPLATE modulus
template <class _Ty = void>
struct modulus {
    _CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef _Ty first_argument_type;
    _CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef _Ty second_argument_type;
    _CXX17_DEPRECATE_ADAPTOR_TYPEDEFS typedef _Ty result_type;

    constexpr _Ty operator()(const _Ty& _Left, const _Ty& _Right) const {
        return _Left % _Right;
    }
};

该函数对象 定义了 模板参数 template <class _Ty = void> , _Ty 泛型的默认参数是 void , 即 如果 不指定 模板参数 , _Ty 泛型就是 void 类型 , 一般情况下使用 int 类型 进行取模运算 ;

在 modulus 函数对象 中 , 重载 函数调用操作符 函数 是最核心的函数 , 在该函数中 , 将第一个参数 const _Ty& _Left 与 第二个参数 const _Ty& _Right 进行取模运算 , 返回 模运算 的结果 ;


代码示例 :

#include "iostream"
using namespace std;
#include "functional"

int main() {

	// 创建函数对象
	modulus<int> mod;

	// 调用函数对象
	int result = mod(5, 2);

	// 打印执行结果
	cout << "result = " << result << endl;


	// 控制台暂停 , 按任意键继续向后执行
	system("pause");
	return 0;
};

执行结果 :

【C++】STL 算法 ⑪ ( 函数适配器嵌套用法 | modulus 函数对象 - 取模运算 | std::count_if 函数原型 | std::not1 函数原型 ),C++,c++,算法,开发语言,stl,函数适配器,函数适配器嵌套,modulus


2、std::count_if 函数原型


std::count_if 函数 是 C++ 标准库算法 , 该 函数 的作用是 计算范围内满足特定条件的元素的数量 , 该函数 接受 一个迭代器范围 和 谓词函数 ;

注意 : 迭代器范围 的 起始迭代器 ~ 终止迭代器 是一个 前闭后开区间


std::count_if 算法的 函数原型 如下 :

// FUNCTION TEMPLATE count_if
template <class _InIt, class _Pr>
_NODISCARD _Iter_diff_t<_InIt> count_if(_InIt _First, _InIt _Last, _Pr _Pred) { // count elements satisfying _Pred
    _Adl_verify_range(_First, _Last);
    auto _UFirst               = _Get_unwrapped(_First);
    const auto _ULast          = _Get_unwrapped(_Last);
    _Iter_diff_t<_InIt> _Count = 0;
    for (; _UFirst != _ULast; ++_UFirst) {
        if (_Pred(*_UFirst)) {
            ++_Count;
        }
    }

    return _Count;
}
  • _InIt _First 参数 : 迭代器范围的 起始迭代器 , 包括本迭代器指向的元素 ;
  • _InIt _Last 参数 : 迭代器范围的 终止迭代器 , 不包括本迭代器指向的元素 ;
  • _Pr _Pred 参数 : 谓词函数 ;

3、代码示例 - 使用 函数适配器 绑定函数对象参数


在下面的代码中 , 将 myVector 单端数组 容器 中的元素 设置给 modulus 函数对象的 第一个参数 , 将 equal_num 变量设置为 该 modulus 函数对象的 第二个参数 , 然后依次遍历 myVector 单端数组 容器 将每个元素 与 equal_num 进行取模运算 ;

	// 计算 vector 容器中 , 值为 2 的个数
	int equal_num = 2;
	// 取模运算 , 模 2 返回值 1 就是奇数 , 返回值 0 就是偶数
	int count = count_if(myVector.begin(), myVector.end(), bind2nd(modulus<int>(), 2));

代码示例 :

#include "iostream"
using namespace std;
#include <vector>
#include <algorithm>
#include "functional"

int main() {

	// 创建一个 set 集合容器
	vector<int> myVector;

	// 向容器中插入元素
	myVector.push_back(9);
	myVector.push_back(5);
	myVector.push_back(2);
	myVector.push_back(7);
	myVector.push_back(2);

	// 向 foreach 循环中传入 Lambda 表达式
	for_each(myVector.begin(), myVector.end(), [](int a) {
		std::cout << a << " ";
		});
	cout << endl;

	// 计算 vector 容器中 , 值为 2 的个数
	int equal_num = 2;
	// 取模运算 , 模 2 返回值 1 就是奇数 , 返回值 0 就是偶数
	int count = count_if(myVector.begin(), myVector.end(), bind2nd(modulus<int>(), 2));
	cout << "值奇数元素个数 : " << count << endl;


	// 控制台暂停 , 按任意键继续向后执行
	system("pause");
	return 0;
};




二、函数适配器示例 - 函数适配器嵌套用法



1、std::not1 函数原型


std::not1 是 预定义的 函数适配器 函数 , 该 函数 接收一个 一员函数对象 , 返回新的 一元函数对象 , 返回的 一元函数对象 是对输入的 一元函数对象 的 结果 进行 逻辑非 运算 ;


std::not1 函数原型如下 :

template <class UnaryPredicate>  
unary_negate<UnaryPredicate> not1(UnaryPredicate pred);
  • UnaryPredicate pred 参数 : 一元谓词 , 也就是 接受单个参数 并返回布尔值的可调用对象 ;
  • unary_negate<UnaryPredicate> 类型返回值 : 返回值 是 封装了 UnaryPredicate 并提供了一个 operator() 成员函数一元谓词 , 该函数对 UnaryPredicate 的结果取反 ;

std::not1 可以 与 std::bind1st 或 std::bind2nd 嵌套使用 , 创建更复杂的谓词 ;


2、代码示例 - 函数适配器嵌套用法


核心代码如下 :

	// 计算 vector 容器中 , 值为 2 的个数
	int equal_num = 2;
	// 取模运算 , 模 2 返回值 1 就是奇数 , 返回值 0 就是偶数
	// not1 将其取反 也就是获取的是 非奇数 个数
	int count = count_if(myVector.begin(), myVector.end(), not1(bind2nd(modulus<int>(), 2)));

下面的代码中 , modulus 是一个二元函数对象 , 返回 0 或 1 可以当做 二元谓词 ;

bind2nd(modulus<int>(), 2) 将 二元谓词 中的 第二个元素进行了绑定 , 只需要接收一个参数 , 变成了 一元谓词 ;

not1(bind2nd(modulus<int>(), 2)) 将 上述 一元谓词 取反 , 得到一个新的一元谓词 ;


代码示例 :

#include "iostream"
using namespace std;
#include <vector>
#include <algorithm>
#include "functional"

int main() {

	// 创建一个 set 集合容器
	vector<int> myVector;

	// 向容器中插入元素
	myVector.push_back(9);
	myVector.push_back(5);
	myVector.push_back(2);
	myVector.push_back(7);
	myVector.push_back(2);

	// 向 foreach 循环中传入 Lambda 表达式
	for_each(myVector.begin(), myVector.end(), [](int a) {
		std::cout << a << " ";
		});
	cout << endl;

	// 计算 vector 容器中 , 值为 2 的个数
	int equal_num = 2;
	// 取模运算 , 模 2 返回值 1 就是奇数 , 返回值 0 就是偶数
	// not1 将其取反 也就是获取的是 非奇数 个数
	int count = count_if(myVector.begin(), myVector.end(), not1(bind2nd(modulus<int>(), 2)));
	cout << "偶数元素个数 : " << count << endl;


	// 控制台暂停 , 按任意键继续向后执行
	system("pause");
	return 0;
};

执行结果 :

9 5 2 7 2
偶数元素个数 : 2
请按任意键继续. . .

【C++】STL 算法 ⑪ ( 函数适配器嵌套用法 | modulus 函数对象 - 取模运算 | std::count_if 函数原型 | std::not1 函数原型 ),C++,c++,算法,开发语言,stl,函数适配器,函数适配器嵌套,modulus文章来源地址https://www.toymoban.com/news/detail-796491.html

到了这里,关于【C++】STL 算法 ⑪ ( 函数适配器嵌套用法 | modulus 函数对象 - 取模运算 | std::count_if 函数原型 | std::not1 函数原型 )的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【STL】容器适配器stack和queue常见用法及模拟实现

    1.stack介绍及使用 1.1 stack的介绍 stack文档介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。 stack是作为容器适配器被实现的,容器适配器是使用特定容器类的封装对象作为其基础容器的类,提供一

    2024年02月06日
    浏览(44)
  • C++ [STL容器适配器]

    本文已收录至《C++语言》专栏! 作者:ARMCSKGT 前面我们介绍了适配器模式中的反向迭代器,反向迭代器通过容器所支持的正向迭代器适配为具有反向迭代功能的迭代器,本节我们介绍STL中另一种适配器: 容器适配器 ! 前面我们提到过STL适配器模式,关于适配器的解释: S

    2024年02月11日
    浏览(43)
  • C++ STL学习之【容器适配器】

    ✨个人主页: 北 海 🎉所属专栏: C++修行之路 🎊每篇一句: 图片来源 A year from now you may wish you had started today. 明年今日,你会希望此时此刻的自己已经开始行动了。 适配器(配接器)是 STL 中的六大组件之一,扮演着轴承、转换器的角色,使得 STL 中组件的使用更为灵活,

    2023年04月22日
    浏览(55)
  • 【C++】STL之容器适配器——使用deque适配stack和queue

    个人主页:🍝在肯德基吃麻辣烫 分享一句喜欢的话:热烈的火焰,冰封在最沉默的火山深处。 本文章主要介绍容器适配器的功能,以及一个适配的场景。 容器适配器,按字面意思理解的话,就是用来对一个容器进行匹配的。在C++STL中,容器有:vector,list,deque,map,set等。

    2024年02月16日
    浏览(54)
  • STL:双端队列&容器适配器&仿函数&优先级队列

    双端队列可以在头部和尾部进行插入删除操作 与vector相比,头插效率高,不需要搬移元素 与list相比,空间利用率高 deque逻辑上空间是连续的,物理上并不是,是由一段段小空间拼接而成的 双端队列的迭代器比较复杂 cur:指向空间中被遍历的那个元素 first:指向空间开始

    2024年02月16日
    浏览(42)
  • STL容器适配器 -- stack和queue(使用+实现)(C++)

    栈和队列数据结构+画图分析如果对栈和队列的结构不了解的,可以先看该链接的内容 使用stack时需要头文件 #includestack stack是一种容器适配器,用于具有 后进先出 (LIFO)的环境中。只能从容器的一端(栈顶),执行删除、插入和提取操作。 stack是作为容器适配器实现的,容器

    2024年02月14日
    浏览(61)
  • 【C++】STL——反向迭代器的模拟实现:迭代器适配器

    反向迭代器的使用相信大家都已经比较熟悉了,那我们这篇文章具体讲什么呢? 🆗,这篇文章我们重点来讲一下 反向迭代器的模拟实现 。 那为什么我们之前不和正向迭代器放在一块讲呢?为什么要等到我们讲完了容器适配器再来讲反向迭代器的模拟实现呢? 那这个问题我

    2024年02月08日
    浏览(41)
  • 【C++】STL之适配器---用deque实现栈和队列

    目录 前言 一、deque  1、deque 的原理介绍  2、deque 的底层结构  3、deque 的迭代器  4、deque 的优缺点   4.1、优点   4.2、缺点 二、stack 的介绍和使用  1、stack 的介绍  2、stack 的使用  3、stack 的模拟实现 三、queue 的介绍和使用  1、queue 的介绍   2、queue 的使用  3、queue 的模

    2024年02月07日
    浏览(50)
  • 【C++入门到精通】C++入门 —— 容器适配器、stack和queue(STL)

    文章绑定了VS平台下std::stack和std::queue的源码,大家可以下载了解一下😍 前面我们讲了C语言的基础知识,也了解了一些数据结构,并且讲了有关C++的命名空间的一些知识点以及关于C++的缺省参数、函数重载,引用 和 内联函数也认识了什么是类和对象以及怎么去new一个 ‘对象

    2024年02月12日
    浏览(44)
  • C++、STL标准模板库和泛型编程 ——适配器、补充(侯捷)

    侯捷 C++八部曲笔记汇总 - - - 持续更新 ! ! ! 一、C++ 面向对象高级开发 1、C++面向对象高级编程(上) 2、C++面向对象高级编程(下) 二、STL 标准库和泛型编程 1、分配器、序列式容器 2、关联式容器 3、迭代器、 算法、仿函数 4、适配器、补充 三、C++ 设计模式 四、C++ 新标准 五、

    2023年04月27日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包