深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化

这篇具有很好参考价值的文章主要介绍了深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在深度学习中,第一步要做的往往就是处理数据集,尤其是学习百度飞桨PaddlePaddle的小伙伴,数据集经常要用Voc格式的,比如性能突出的ppyolo等模型。所以学会数据集转化的本领是十分必要的。这篇博客就带你一起进行Yolo与Voc格式的相互转化,附详细代码!

YOLO数据集介绍

Yolo数据集主要是txt文件,一般包括train文件夹和val文件夹,每一个文件夹下有与图片同名的txt文件,基本结构如下:
yolo转成voc,深度学习,机器学习,深度学习,YOLO,人工智能
|–image

  • ||–train
  • ||–val

|–label

  • ||–train
  • ||–val

txt的标签如下图所示:

yolo转成voc,深度学习,机器学习,深度学习,YOLO,人工智能
第一列为目标类别,后面四个数字为方框左上角与右下角的坐标,可以看到都是小于1的数字,是因为对应的整张图片的比例,所以就算图像被拉伸放缩,这种txt格式的标签也可以找到相应的目标。

VOC数据集介绍

VOC格式数据集一般有着如下的目录结构:

VOC_ROOT     #根目录
    ├── JPEGImages         # 存放源图片
    │     ├── aaaa.jpg     
    │     ├── bbbb.jpg  
    │     └── cccc.jpg
    ├── Annotations        # 存放xml文件,与JPEGImages中的图片一一对应,解释图片的内容等等
    │     ├── aaaa.xml 
    │     ├── bbbb.xml 
    │     └── cccc.xml 
    └── ImageSets          
        └── Main
          ├── train.txt    # txt文件中每一行包含一个图片的名称
          └── val.txt
 

其中JPEGImages目录中存放的是源图片的数据,(当然图片并不一定要是.jpg格式的,只是规定文件夹名字叫JPEGImages);Annotations目录中存放的是标注数据,VOC的标注是xml格式的,文件名与JPEGImages中的图片一一对应。
重点看下xml格式的标注格式:

<annotation>
    <folder>VOC_ROOT</folder>                           
    <filename>aaaa.jpg</filename>  # 文件名
    <size>                         # 图像尺寸(长宽以及通道数)                      
        <width>500</width>
        <height>332</height>
        <depth>3</depth>
    </size>
    <segmented>1</segmented>       # 是否用于分割(在图像物体识别中无所谓)
    <object>                       # 检测到的物体
        <name>horse</name>         # 物体类别
        <pose>Unspecified</pose>   # 拍摄角度,如果是自己的数据集就Unspecified
        <truncated>0</truncated>   # 是否被截断(0表示完整)
        <difficult>0</difficult>   # 目标是否难以识别(0表示容易识别)
        <bndbox>                   # bounding-box(包含左下角和右上角xy坐标)
            <xmin>100</xmin>
            <ymin>96</ymin>
            <xmax>355</xmax>
            <ymax>324</ymax>
        </bndbox>
    </object>
    <object>                       # 检测到多个物体
        <name>person</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>198</xmin>
            <ymin>58</ymin>
            <xmax>286</xmax>
            <ymax>197</ymax>
        </bndbox>
    </object>
</annotation>

Yolo转VOC

文件结构如下:

Yolo转VOC     #根目录
    ├── dataset         
    │     ├── Annotations     
    │     ├── image  
               └──image图像
    │     └── label
               └──txt文件
    ├── Yolo转VOC.py        # 代码文件

具体代码:

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project :Yolo与VOC转化 
@File    :Yolo转Voc.py
@IDE     :PyCharm 
@Author  :咋
@Date    :2023/3/6 16:45 
"""
from xml.dom.minidom import Document
import os
import cv2


# def makexml(txtPath, xmlPath, picPath):  # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
def makexml(picPath, txtPath, xmlPath):  # txt所在文件夹路径,xml文件保存路径,图片所在文件夹路径
    """此函数用于将yolo格式txt标注文件转换为voc格式xml标注文件
    """
    dic = {'0': "blue",  # 创建字典用来对类型进行转换
           '1': "red",  # 此处的字典要与自己的classes.txt文件中的类对应,且顺序要一致
           }
    files = os.listdir(txtPath)
    for i, name in enumerate(files):
        xmlBuilder = Document()
        annotation = xmlBuilder.createElement("annotation")  # 创建annotation标签
        xmlBuilder.appendChild(annotation)
        txtFile = open(txtPath + name)
        txtList = txtFile.readlines()
        img = cv2.imread(picPath + name[0:-4] + ".jpg")
        Pheight, Pwidth, Pdepth = img.shape

        folder = xmlBuilder.createElement("folder")  # folder标签
        foldercontent = xmlBuilder.createTextNode("driving_annotation_dataset")
        folder.appendChild(foldercontent)
        annotation.appendChild(folder)  # folder标签结束

        filename = xmlBuilder.createElement("filename")  # filename标签
        filenamecontent = xmlBuilder.createTextNode(name[0:-4] + ".jpg")
        filename.appendChild(filenamecontent)
        annotation.appendChild(filename)  # filename标签结束

        size = xmlBuilder.createElement("size")  # size标签
        width = xmlBuilder.createElement("width")  # size子标签width
        widthcontent = xmlBuilder.createTextNode(str(Pwidth))
        width.appendChild(widthcontent)
        size.appendChild(width)  # size子标签width结束

        height = xmlBuilder.createElement("height")  # size子标签height
        heightcontent = xmlBuilder.createTextNode(str(Pheight))
        height.appendChild(heightcontent)
        size.appendChild(height)  # size子标签height结束

        depth = xmlBuilder.createElement("depth")  # size子标签depth
        depthcontent = xmlBuilder.createTextNode(str(Pdepth))
        depth.appendChild(depthcontent)
        size.appendChild(depth)  # size子标签depth结束

        annotation.appendChild(size)  # size标签结束

        for j in txtList:
            oneline = j.strip().split(" ")
            object = xmlBuilder.createElement("object")  # object 标签
            picname = xmlBuilder.createElement("name")  # name标签
            namecontent = xmlBuilder.createTextNode(dic[oneline[0]])
            picname.appendChild(namecontent)
            object.appendChild(picname)  # name标签结束

            pose = xmlBuilder.createElement("pose")  # pose标签
            posecontent = xmlBuilder.createTextNode("Unspecified")
            pose.appendChild(posecontent)
            object.appendChild(pose)  # pose标签结束

            truncated = xmlBuilder.createElement("truncated")  # truncated标签
            truncatedContent = xmlBuilder.createTextNode("0")
            truncated.appendChild(truncatedContent)
            object.appendChild(truncated)  # truncated标签结束

            difficult = xmlBuilder.createElement("difficult")  # difficult标签
            difficultcontent = xmlBuilder.createTextNode("0")
            difficult.appendChild(difficultcontent)
            object.appendChild(difficult)  # difficult标签结束

            bndbox = xmlBuilder.createElement("bndbox")  # bndbox标签
            xmin = xmlBuilder.createElement("xmin")  # xmin标签
            mathData = int(((float(oneline[1])) * Pwidth + 1) - (float(oneline[3])) * 0.5 * Pwidth)
            xminContent = xmlBuilder.createTextNode(str(mathData))
            xmin.appendChild(xminContent)
            bndbox.appendChild(xmin)  # xmin标签结束

            ymin = xmlBuilder.createElement("ymin")  # ymin标签
            mathData = int(((float(oneline[2])) * Pheight + 1) - (float(oneline[4])) * 0.5 * Pheight)
            yminContent = xmlBuilder.createTextNode(str(mathData))
            ymin.appendChild(yminContent)
            bndbox.appendChild(ymin)  # ymin标签结束

            xmax = xmlBuilder.createElement("xmax")  # xmax标签
            mathData = int(((float(oneline[1])) * Pwidth + 1) + (float(oneline[3])) * 0.5 * Pwidth)
            xmaxContent = xmlBuilder.createTextNode(str(mathData))
            xmax.appendChild(xmaxContent)
            bndbox.appendChild(xmax)  # xmax标签结束

            ymax = xmlBuilder.createElement("ymax")  # ymax标签
            mathData = int(((float(oneline[2])) * Pheight + 1) + (float(oneline[4])) * 0.5 * Pheight)
            ymaxContent = xmlBuilder.createTextNode(str(mathData))
            ymax.appendChild(ymaxContent)
            bndbox.appendChild(ymax)  # ymax标签结束

            object.appendChild(bndbox)  # bndbox标签结束

            annotation.appendChild(object)  # object标签结束

        f = open(xmlPath + name[0:-4] + ".xml", 'w')
        xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
        f.close()


if __name__ == "__main__":
    picPath = "dataset/JPEGImages/"  # 图片所在文件夹路径,后面的/一定要带上
    txtPath = "dataset/YOLOLables/"  # txt所在文件夹路径,后面的/一定要带上
    xmlPath = "dataset/annotations/"  # xml文件保存路径,后面的/一定要带上
    makexml(picPath, txtPath, xmlPath)


VOC转Yolo

相当于上述操作的逆运算,这里直接给出代码:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random
from shutil import copyfile

from lxml import etree

#自己的类别
classes = [“0”, “1”,‘2’,‘3’,‘person’]

classes=[“ball”]

TRAIN_RATIO = 80 #训练集比例

def clear_hidden_files(path):
dir_list = os.listdir(path)
for i in dir_list:
abspath = os.path.join(os.path.abspath(path), i)
if os.path.isfile(abspath):
if i.startswith(“._”):
os.remove(abspath)
else:
clear_hidden_files(abspath)

#数据转换
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)

#编写格式
def convert_annotation(image_id):
in_file = open(‘./dataset/annotations/%s.xml’ % image_id)
out_file = open(‘./dataset/YOLOLabels/%s.txt’ % image_id, ‘w’)
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find(‘size’)
w = int(size.find(‘width’).text)
h = int(size.find(‘height’).text)

for obj in root.iter('object'):
    difficult = obj.find('difficult').text
    cls = obj.find('name').text
    if cls not in classes or int(difficult) == 1:
        continue
    cls_id = classes.index(cls)
    xmlbox = obj.find('bndbox')
    b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
         float(xmlbox.find('ymax').text))
    bb = convert((w, h), b)
    out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
in_file.close()
out_file.close()

#创建上述目录结构
wd = os.getcwd()

work_sapce_dir = os.path.join(wd, “dataset/”)
if not os.path.isdir(work_sapce_dir):
os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, “annotations/”)
if not os.path.isdir(annotation_dir):
os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, “JPEGImages/”)
if not os.path.isdir(image_dir):
os.mkdir(image_dir)
clear_hidden_files(image_dir)
yolo_labels_dir = os.path.join(work_sapce_dir, “YOLOLabels/”)
if not os.path.isdir(yolo_labels_dir):
os.mkdir(yolo_labels_dir)
clear_hidden_files(yolo_labels_dir)
yolov5_images_dir = os.path.join(work_sapce_dir, “images/”)
if not os.path.isdir(yolov5_images_dir):
os.mkdir(yolov5_images_dir)
clear_hidden_files(yolov5_images_dir)
yolov5_labels_dir = os.path.join(work_sapce_dir, “labels/”)
if not os.path.isdir(yolov5_labels_dir):
os.mkdir(yolov5_labels_dir)
clear_hidden_files(yolov5_labels_dir)
yolov5_images_train_dir = os.path.join(yolov5_images_dir, “train/”)
if not os.path.isdir(yolov5_images_train_dir):
os.mkdir(yolov5_images_train_dir)
clear_hidden_files(yolov5_images_train_dir)
yolov5_images_test_dir = os.path.join(yolov5_images_dir, “val/”)
if not os.path.isdir(yolov5_images_test_dir):
os.mkdir(yolov5_images_test_dir)
clear_hidden_files(yolov5_images_test_dir)
yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, “train/”)
if not os.path.isdir(yolov5_labels_train_dir):
os.mkdir(yolov5_labels_train_dir)
clear_hidden_files(yolov5_labels_train_dir)
yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, “val/”)
if not os.path.isdir(yolov5_labels_test_dir):
os.mkdir(yolov5_labels_test_dir)
clear_hidden_files(yolov5_labels_test_dir)

#创建两个记录照片名字的文件
train_file = open(os.path.join(yolov5_images_dir, “yolov5_train.txt”), ‘w’)
test_file = open(os.path.join(yolov5_images_dir, “yolov5_val.txt”), ‘w’)
train_file.close()
test_file.close()
train_file = open(os.path.join(yolov5_images_dir, “yolov5_train.txt”), ‘a’)
test_file = open(os.path.join(yolov5_images_dir, “yolov5_val.txt”), ‘a’)

#随机划分
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print(“Probability: %d” % prob)
for i in range(0, len(list_imgs)):
path = os.path.join(image_dir, list_imgs[i])
if os.path.isfile(path):
image_path = image_dir + list_imgs[i]
voc_path = list_imgs[i]
(nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
(voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
annotation_name = nameWithoutExtention + ‘.xml’
annotation_path = os.path.join(annotation_dir, annotation_name)
label_name = nameWithoutExtention + ‘.txt’
label_path = os.path.join(yolo_labels_dir, label_name)
prob = random.randint(1, 100)
print(“Probability: %d” % prob)
if (prob < TRAIN_RATIO): # train dataset
if os.path.exists(annotation_path):
train_file.write(image_path + ‘\n’)
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_train_dir + voc_path)
copyfile(label_path, yolov5_labels_train_dir + label_name)
else: # test dataset
if os.path.exists(annotation_path):
test_file.write(image_path + ‘\n’)
convert_annotation(nameWithoutExtention) # convert label
copyfile(image_path, yolov5_images_test_dir + voc_path)
copyfile(label_path, yolov5_labels_test_dir + label_name)
train_file.close()
test_file.close()文章来源地址https://www.toymoban.com/news/detail-796737.html

到了这里,关于深度学习必备知识——模型数据集Yolo与Voc格式文件相互转化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO,VOC数据集标注格式

    YOLO数据集txt标注格式: 每个标签有五个数据,依次代表: 所标注内容的类别,数字与类别一一对应 归一化后中心点的x坐标 归一化后中心点的y坐标 归一化后目标框的宽度w 归一化后目标框的高度h 这里归一化是指除以原始图片的宽和高 VOC数据集xml标注格式 转换公式: VOC

    2023年04月08日
    浏览(69)
  • YOLO目标检测——VOC2007数据集+已标注VOC格式标签下载分享

    VOC2007数据集是一个经典的目标检测数据集,该数据集包含了20个常见的目标类别,涵盖了人、动物、交通工具等多个领域,共同11220图片。使用lableimg标注软件标注,标注框质量高,标签格式为VOC格式(即xml标签),可以直接用于YOLO系列的目标检测。 数据集点击下载 :YOLO目

    2024年02月09日
    浏览(43)
  • YOLO格式数据集(.txt)如何转换为VOC格式数据集(.xml)

    前言: 安装好python环境与编译器 转换: 将标注文件从文本格式( .txt )转换为 XML 格式( .xml )可以通过以下步骤完成: 解析文本标注文件:打开 .txt 文件,逐行读取每个标注,并解析边界框坐标和类别信息。 创建 XML 文件:使用 Python 的内置库 xml.etree.ElementTree 创建一个

    2024年02月12日
    浏览(43)
  • 目标检测数据集格式转换:将labelme格式转为YOLO以及VOC格式

    一个目标检测项目需要自己找图片标注数据进行训练,训练需要YOLO格式,但数据增广需要VOC格式,该文记录如何将labelme标注的数据格式转为YOLO格式,再从YOLO格式转为VOC格式,只作为自己用的记录,如果你刚好也需要这么干,或者需要文中提到的某一种转换,也可以参考一下

    2024年02月08日
    浏览(49)
  • 道路坑洞数据集(坑洞目标检测)VOC+YOLO格式650张

        路面坑洞的形成原因是由于设计、施工、养护处理不当、控制不适和受气候、环境、地质、水文等自然因素影响,以及车辆的运行和车辆超载运行导致路面破损,出现坑洞的现象。 路面坑洞的分类: (1)路面混凝土板中坑洞:位于砼板表面,形状小、深度浅多为不规则

    2024年02月04日
    浏览(52)
  • 目标检测任务中常用的数据集格式(voc、coco、yolo)

    VOC数据集(Annotation的格式是xmI) Pascal VOC数据集是目标检测的常用的大规模数据集之一,从05年到12年都会举办比赛,比赛任务task: 分类Classification 目标检测Object Detection 语义分割Class Segmentation 实例分割Object Segmentation Action Classification(专注于人体动作的一种分类) Person Layout(

    2024年02月14日
    浏览(46)
  • 数据集格式相互转换——CoCo、VOC、YOLO、TT100K

    将annotations目录下的所有xml标注文件按coco格式写入了json文件中。 此处得到的是全部的标签信息,可根据如下代码进行train、val和test的比例划分: train和val同理。 train、val和test分别执行一次即可。 以上代码参考自博文数据转换。

    2023年04月09日
    浏览(40)
  • [数据集][目标检测]茶叶病害数据集VOC+YOLO格式883张8类别

    数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):883 标注数量(xml文件个数):883 标注数量(txt文件个数):883 标注类别数:8 标注类别名称:[\\\"algalleaf\\\",\\\"Anthracnose\\\",\\\"birdeyespot\\\",\\\"brownblight

    2024年01月16日
    浏览(43)
  • [数据集][目标检测]昆虫检测数据集VOC+YOLO格式1873张7类别

    数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1873 标注数量(xml文件个数):1873 标注数量(txt文件个数):1873 标注类别数:7 标注类别名称:[\\\"Boerner\\\",\\\"Leconte\\\",\\\"Linnaeus\\\",\\\"acuminatus\\\",\\\"arma

    2024年03月19日
    浏览(61)
  • [数据集][目标检测]牛羊检测数据集VOC+YOLO格式3393张2类别

    数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3393 标注数量(xml文件个数):3393 标注数量(txt文件个数):3393 标注类别数:2 标注类别名称:[\\\"cow\\\",\\\"sheep\\\"] 每个类别标注的框数: cow

    2024年03月19日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包