基于yolov5轻量级的学生上课姿势检测识别分析系统

这篇具有很好参考价值的文章主要介绍了基于yolov5轻量级的学生上课姿势检测识别分析系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在我之前的博文中已经做过关于人体姿势识别人体姿态检测的博文,都是比较早期的技术模型了,随机技术的迭代更新,很多更加出色的模型陆续出现,这里基于一些比较好用的轻量级模型开发的姿态检测模型。

原始博文如下:

《人体行为姿势识别数据集WISDM实践》

yolov 动作检测,人工智能

 文章来源地址https://www.toymoban.com/news/detail-796765.html

《yolov4-tiny目标检测模型实战——学生姿势行为检测》

yolov 动作检测,人工智能

 感兴趣的话可以自行移步前去阅读。

本文的主要工作室基于轻量级的yolov5s模型来开发学生上课姿势检测模型。首先看下效果:

基于yolov5的轻量级学生上课姿势检测分析系统

图像数据如下:

yolov 动作检测,人工智能

 YOLO格式的标注文件如下所示:

yolov 动作检测,人工智能

 模型配置文件如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

训练完成结果目录截图如下所示:

yolov 动作检测,人工智能

 训练过程监控指标如下:

yolov 动作检测,人工智能

 混淆矩阵:

yolov 动作检测,人工智能

 F1值曲线和PR曲线如下:

yolov 动作检测,人工智能

 标签可视化如下所示:

yolov 动作检测,人工智能

 batch检测样例可视化如下所示:

yolov 动作检测,人工智能

 启动检测系统如下:

yolov 动作检测,人工智能

 点击上传图像即可选择想要检测识别的图像,如下所示:

yolov 动作检测,人工智能

 点击目标检测识别即可启动离线推理计算,如下所示:

yolov 动作检测,人工智能

 

到了这里,关于基于yolov5轻量级的学生上课姿势检测识别分析系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Yolov8轻量级:EfficientViT,基于级联分组注意力模块的全新实时网络架构,better speed and accuracy

      EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention 论文:https://arxiv.org/abs/2305.07027 代码:Cream/EfficientViT at main · microsoft/Cream · GitHub         近些年对视觉Transformer模型(ViT)的深入研究,ViT的表达能力不断提升,并已经在大部分视觉基础任务 (分类,检测,分

    2024年02月07日
    浏览(88)
  • 实践航拍小目标检测,基于轻量级YOLOv8n开发构建无人机航拍场景下的小目标检测识别分析系统

    关于无人机相关的场景在我们之前的博文也有一些比较早期的实践,感兴趣的话可以自行移步阅读即可: 《deepLabV3Plus实现无人机航拍目标分割识别系统》 《基于目标检测的无人机航拍场景下小目标检测实践》 《助力环保河道水质监测,基于yolov5全系列模型【n/s/m/l/x】开发构

    2024年03月11日
    浏览(62)
  • python Web开发 flask轻量级Web框架实战项目--学生管理系统

     上次发的一篇文章,有很多朋友私信我要后面的部分,那咱们就今天来一起学习一下吧,因为我的数据库这门课选中的课题是学生管理系统,所以今天就以这个课题为例子,从0到1去实现一个管理系统。数据库设计部分我会专门出一个博客的,敬请期待吧~~~ 介如很多朋友问

    2024年02月16日
    浏览(62)
  • YOLOv8优化策略:轻量化改进 | MobileNetV3,轻量级骨架首选

     🚀🚀🚀 本文改进:MobileNetV3的创新点包括:使用自适应瓶颈宽度、借鉴SENet中的Squeeze-and-Excitation机制、引入h-swish激活函数等。  🚀🚀🚀YOLOv8改进专栏: 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 论文:https://arxiv.org/pdf/1905.02244.pdf  MobileNetV1、V2、V3都是G

    2024年01月24日
    浏览(72)
  • YOLOv8轻量化:MobileNetV3,理想的轻量级骨架选择 - 计算机视觉

    YOLOv8是一种广泛应用于目标检测任务的深度学习模型。为了在计算资源受限的环境下实现高效的目标检测,使用轻量级骨架是至关重要的。在这方面,MobileNetV3是一个出色的选择,它具有较少的参数和计算复杂度,同时保持了较高的准确性和速度。 MobileNetV3是Google提出的一种

    2024年03月16日
    浏览(81)
  • 改进YOLOv8 | 特征融合篇 | YOLOv8 应用轻量级通用上采样算子CARAFE | 《特征的内容感知重组》

    特征上采样是现代卷积神经网络架构中的关键操作,例如特征金字塔。其设计对于密集预测任务,如目标检测和语义/实例分割至关重要。在本研究中,我们提出了一种称为内容感知特征重组(CARAFE)的通用、轻量级且高效的操作符,以实现这一目标。CARAFE具有以下几个优点:

    2024年02月07日
    浏览(60)
  • YOLOv8改进 | 主干篇 | 轻量级的低照度图像增强网络IAT改进YOLOv8暗光检测(全网独家首发)

    本文给大家带来的改进机制是轻量级的变换器模型: Illumination Adaptive Transformer (IAT) ,用于图像增强和曝光校正。其基本原理是通过 分解图像信号处理器(ISP)管道到局部和全局图像组件 ,从而 恢复在低光或过/欠曝光条件下的正常光照sRGB图像 。具体来说,IAT使用注意力查

    2024年04月26日
    浏览(51)
  • 主干网络篇 | YOLOv8更换主干网络之VanillaNet | 华为方舟实验室提出全新轻量级骨干架构

    前言: Hello大家好,我是小哥谈。 华为方舟实验室所提出的VanillaNet架构克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。其易于理解和高度简化的架构为高效部署开辟了新的可能性。广泛的实验表明,VanillaNet提供的性能与著名的深度神经网络和vision transformer

    2024年04月14日
    浏览(72)
  • 基于 Linux 的轻量级多线程 HTTP 服务

          使用基本的Linux系统调用来创建一个TCP socket,监听端口8080,并在接受到客户端连接时创建一个新的线程来处理连接。每个连接处理函数都是一个独立的线程,读取客户端请求并发送固定的HTTP响应。      代码: 代码解析: 这段代码实现了一个简单的基于Linux的轻量级

    2024年02月16日
    浏览(49)
  • golang一个轻量级基于内存的kv存储或缓存

    golang一个轻量级基于内存的kv存储或缓存 go-cache是一个轻量级的基于内存的key:value 储存组件,类似于memcached,适用于在单机上运行的应用程序。 它的主要优点是,本质上是一个具有过期时间的线程安全map[string]interface{}。interface的结构决定了它不需要序列化。基于内存的特性

    2024年02月02日
    浏览(73)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包