yolov7论文学习——创新点解析、网络结构图

这篇具有很好参考价值的文章主要介绍了yolov7论文学习——创新点解析、网络结构图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

创新点

1、提出了E-ELAN,但是只在yolov7-e6e中使用到。
2、yolov7基于拼接模型的缩放方法,在yolov7x中使用到。
3、将重参数化卷积应用到残差模块中或者用到基于拼接的模块中去。RepConvN
4、提出了两种新的标签分配方法

一、ELAN和E-ELAN

1、 ELAN

yolov7使用大量的ELAN作为基础模块。 这么多堆叠其实对应了更密集的残差结构,残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题
yolov7网络结构图,yolo,YOLO

   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11

2、E-ELAN

2分组的卷积,本质上就是ELAN的拓展 。只在yolov7-e6e中提到,是将yolov7-e6中的ELAN并行处理后得到的。
yolov7网络结构图,yolo,YOLO
yolov7网络结构图,yolo,YOLO

二、模型缩放

设计了同时改变深度和宽度的模型缩放方法,yolov7x是对yolov7进行了缩放。
增加了两个卷积层,增加了深度,并且输入数量,拼接后输出数量,以及卷积层输出的通道数量都是原来的1.25倍,从这个角度考虑增加了宽度。
yolov7网络结构图,yolo,YOLO

三、重参数化卷积的改进 RepConvN

1、RepConv

重参数化卷积,使用3个不同的卷积层训练完成后,进行合并。重参数化卷积虽然在VGG上取得较好的成果,但是在残差网络中并没有取得很好的成果 。
yolov7网络结构图,yolo,YOLO

2、RepConvN

而RepConvN是在重参数化卷积的基础上去掉了恒等连接。将重参数化卷积应用到残差模块或者用到基于拼接的模块中去。但是在代码中使用了最简单的重参数化卷积,并没有使用提出的这个结论。
思想取自于RepVGG,基本思想是在训练的时候引入特殊的残差结构辅助训练,这个残差结构是经过独特设计的,在实际预测的时候,可以将复杂的残差结构等效于一个普通的3*3卷积,这个时候网络的复杂度下降,但是网络的预测性能却没有下降。

为什么要去掉恒等连接?
因为残差网络本身存在恒等连接,而原本的重参数化卷积RepConv也有恒等连接,两者之间起了冲突,所以要去掉原本重参数化卷积RepConv中的恒等连接,成为RepConvN。

yolov7网络结构图,yolo,YOLO

四、软标签和硬标签

yolov7网络结构图,yolo,YOLO
硬标签是yolov5所采用的方式,将目标值和预测值一起计算损失值;软标签是yolov7所使用的方式,将目标值通过分配器得到新的目标值,再和预测值一起计算损失值。

五、两种新的标签分配方法

yolov7网络结构图,yolo,YOLO
粗粒度和细粒度。粗标签是5个网格,细标签是3个网格。

六、yolov7网络结构图

yolov7网络结构图,yolo,YOLO
通过backbone获得3个有效特征层。特征金字塔可以将不同shape的特征层进行特征融合,有利于提取出更好的特征。
yolov7中将neck划分到了head里。
yolov7网络结构图,yolo,YOLO
使用MP-1进行下采样,在卷积神经网络中,常见的用于下采样的模块是一个卷积核大小为3 * 3、步长为2 * 2的卷积或者一个步长为2*2的最大池化。池化层和卷积。左边的分支是一个步长为2 * 2的最大池化+1个1 * 1卷积,右边的分支是一个1 * 1卷积+1个卷积核大小为3 * 3、步长为2 * 2的卷积,两个分支的结果在输出时进行拼接。输出的通道数相较于输入没有改变,但是尺寸减半了,相当于复杂版的最大池化层。
目的是压缩宽和高,但是通道数不变。
yolov7网络结构图,yolo,YOLO
加强特征提取模块。 作用是扩大感受野。池化核大小为5,9,13,无处理。

class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

yolov7网络结构图,yolo,YOLO
yolov7网络结构图,yolo,YOLO
yolov7网络结构图,yolo,YOLO

在yolov7中,每一个特征层上每一个特征点存在3个先验框。

最后的255可以拆分成3个85,对应3个先验框的85个参数,85可以拆分成4+1+80。
前4个参数用于判断每一个特征点的回归参数,回归参数调整后可以获得预测框;
第5个参数用于判断每一个特征点是否包含物体;
最后80个参数用于判断每一个特征点所包含的物体种类。

七、yolov7x的网络结构图

yolov7网络结构图,yolo,YOLOyolov7网络结构图,yolo,YOLO

八、检测模块

测试中用的都是detect模块,在训练中,使用的是Idetect和Iauxdetect模块。I的意思是implicit隐式的意思。对于隐式内容可以通过学习yolo-R来了解。
yolov7网络结构图,yolo,YOLO
IDetect
yolov7网络结构图,yolo,YOLO

yolov7网络结构图,yolo,YOLO

九、文件之间的关系

yolov7网络结构图,yolo,YOLO

1、yolov7和yolov7x是常规GPU的模型。yolov7x是在yolov7的基础上在颈部进行堆栈缩放,并使用所提出的复合缩放方法对整个模型的深度和宽度进行缩放得到的。
2、yolov7-d6、yolov7-e6、yolov7-e6e和yolov7-w6是云GPU的模型。对于yolov7-w6,我们使用新提出的复合缩放方法来获得yolov7-e6和yolov7-d6。此外,我们将所提出的E-ELAN用于yolov7-e6,从而完成yolov7-e6e
3、yolov7-tiny和yolov7-tiny-silu是边缘GPU的模型。它们的区别只在于所使用的激活函数不同。yolov7-tiny它将使用Leaky ReLU作为激活函数。对于其他模型,我们使用SiLU作为激活函数。

十、预测结果的编码

具体可以看看这篇博文:睿智的目标检测61——Pytorch搭建YoloV7目标检测平台

1、获得预测框与得分

我们得到的三个特征层的预测结果并不对应着最终的预测框在图片上的位置,还需要解码才可以完成。

2、得分筛选与非极大抑制

得到最终的预测结果后还要进行得分排序与非极大抑制筛选。
得分筛选:筛选出得分满足confidence置信度的预测框。
非极大抑制:筛选出一定区域内属于同一种类得分最大的框。

十一、损失值部分

1、计算loss所需内容

计算loss实际上是 网络的预测结果和网络的真实结果的对比。
网络的损失由三个部分组成,分别是reg部分、obj部分和cls部分。
reg:特征点的回归参数判断
obj:特征点是否包含物体判断
cls:特征点包含的物体的种类

2、正样本的匹配过程

(1)对每个真实框通过坐标与宽高粗略匹配先验框和特征点
(2)使用SimOTA自适应精确选取每个真实框对应多少个先验框
正样本匹配的概念: 寻找哪些先验框被认为有对应的真实框,并且负责这个真实框的预测。
a. 不再使用iou进行正样本的匹配,而是直接采用高宽比进行匹配。
b. SimOTA自适应匹配
在yolov7中,会计算一个Cost代价矩阵,代表每个真实框和每个特征点之间的代价关系,Cost代价矩阵由两个部分组成:
(1)每个真实框和当前特征点预测框的重合程度
(2)每个真实框和当前特征点预测框的种类预测准确度
以上两个值越高,Cost代价越小。文章来源地址https://www.toymoban.com/news/detail-796953.html

3、计算loss

  1. Reg部分,由第2部分知道每个真实框对应的先验框,获取到每个框对应的先验框后,取出该先验框对应的预测框,利用真实框和预测框计算CIOU损失,作为Reg部分的Loss组成。
  2. Obj部分,所有真实框对应的先验框都是正样本,剩余的先验框均为负样本,根据正负样本和特征点的是否包含物体的预测结果计算交叉熵损失,作为Obj部分的Loss组成。
  3. Cls部分,获取每个框的先验框后,取出该先验框的种类预测结果,根据真实框的种类和先验框的种类预测结果计算交叉熵损失,作为Cls部分的Loss组成。

到了这里,关于yolov7论文学习——创新点解析、网络结构图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • yolov5s-6.0网络模型结构图

    因为在6.0上做的了一些东西,所以将6.0得网络模型画了出来,之前也画过5.0的网络模型,有兴趣的小伙伴可以看下。 yolov5s-5.0网络模型结构图_zhangdaoliang1的博客-CSDN博客_yolov5s模型结构 看了很多yolov5方面的东西,最近需要yolov5得模型结构图,但是网上的最多的是大白老师的,

    2023年04月09日
    浏览(39)
  • 深度学习 yolov5等结构图

    今天整理文件时看到自己之前用PPT画的一些结构图,可能也许会有人用得上,就上传上来吧哈哈哈别说这些图画起来还挺费时的,放上PPT版链接可以根据自己的需求更改。 如果有时间的话还是自己动手画一画,画的过程也可以加深对网络结构的理解。 PPT版网盘链接:提取码

    2023年04月24日
    浏览(54)
  • yolov7-论文深度解析

    yolov7自提出便号称在速度和精度方面超过了所有的目标检测器,并能够同时支持边缘设备到云端的移动GPU和GPU设备,而yolov7则具有以下优势: 1、更高的检测精度:相较于其前身 YOLOv5,YOLOv7 在保持速度优势的同时,通过改进骨干网络和特征融合方法等方式,进一步提升了检测

    2024年02月08日
    浏览(40)
  • 【YOLO系列】YOLOv7论文超详细解读(翻译 +学习笔记)

    终于读到传说中的YOLOv7了~≖‿≖✧ 这篇是在美团的v6出来不到一个月就高调登场,作者还是我们熟悉的AB大神(对,就是v4那个),读起来又是“熟悉”的感觉(贯穿了我的整个五一假期(╯-_-)╯╧╧)。 其实关于YOLOv7的网络结构还有很多细节值得深入研究,以及代码

    2024年02月02日
    浏览(75)
  • Yolov7学习笔记(一)模型结构

    个人学习笔记,项目代码参考Bubbliiiing的yolov7-pytorch-master版 参考: 1、Pytorch搭建YoloV7目标检测平台 源码 2、最终版本YOLOv1-v7全系列大解析 3、三万字硬核详解:yolov1、yolov2、yolov3、yolov4、yolov5、yolov7 4、yolo系列的Neck模块 如图所示,yolo系类的结构主要由主干提取结构(Backbon

    2024年02月08日
    浏览(60)
  • YOLOv5/v7 引入 最新 BiFusion Neck | 附详细结构图

    YOLO 社区自前两次发布以来一直情绪高涨!随着中国农历新年2023兔年的到来,美团对YOLOv6进行了许多新的网络架构和训练方案改进。此版本标识为 YOLOv6 v3.0。对于性能,YOLOv6-N在COCO数据集上的AP为37.5%,通过NVIDIA Tesla T4 GPU测试的吞吐量为1187 FPS。YOLOv6-S以484 FPS的速度得到了超过

    2024年02月05日
    浏览(45)
  • 【YOLO系列】YOLOv5、YOLOX、YOOv6、YOLOv7网络模型结构

    【注】: 本文为YOLOv5、YOLOX、YOLOv6、YOLOv7模型结构图,作图软件为drawio。因精力有限暂时不做结构的详细阐述和具体的代码讲解,后续有机会再做补充。如有需要可以查阅其他博主的文章了解学习。 【另】:希望模型结构图可以帮助到有需要的人,如模型中有错误的地方,欢

    2024年02月07日
    浏览(42)
  • 深入浅出 Yolo 系列之 Yolov7 基础网络结构详解

    从 2015 年的 YOLOV1 ,2016 年 YOLOV2 , 2018 年的 YOLOV3 ,到 2020 年的 YOLOV4 、 YOLOV5 , 以及最近出现的 YOLOV76 和 YOLOV7 可以说 YOLO 系列见证了深度学习时代目标检测的演化。对于 YOLO 的基础知识以及 YOLOV1 到 YOLOV5 可以去看大白的 YOLO 系列,本文主要对 YOLOV7 的网络结构进行一个梳理

    2024年02月04日
    浏览(48)
  • 改进YOLOv5:自研网络新结构,可作为创新点 | ALFNet YOLO | 创新必备

    在计算机视觉领域,深度学习已经取得了显著的进展,尤其是在目标检测任务中。然而,随着网络结构不断加深和复杂化#

    2024年02月03日
    浏览(57)
  • 如何设计神经网络结构,visio画神经网络结构图

    大概试了一下用visio绘制这个图,除了最左面的变形图片外其余基本可以实现(那个图可以考虑用其它图像处理软件比如Photoshop生成后插入visio),visio中主要用到的图形可以在更多形状-常规-具有透视效果的块中找到块图形,拖入绘图区后拉动透视角度调节的小红点进行调整

    2024年01月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包