DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读

这篇具有很好参考价值的文章主要介绍了DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习
原文链接: https://ojs.aaai.org/index.php/AAAI/article/view/25114/24886

该论文设计了一种新的零样本学习范式,通过迁移语言模型中的先验语义知识,与视觉模型的特征感知能力进行对齐,以增强后者对于未见过图像的识别能力。

摘要

零样本学习(ZSL)旨在预测在训练期间从未出现样本的未知类别。作为类别级视觉特征的注释,属性是零样本图像分类的广泛使用的语义信息。然而,由于缺乏细粒度的注释以及属性不平衡和共现问题,目前的方法常常无法区分图像之间的微妙视觉差异。在本文中,作者提出了一种基于Transformer的端到端ZSL方法,命名为DUET,通过自监督多模态学习范式整合了来自预训练语言模型(PLMs)潜在语义知识。具体而言,论文中(1)开发了一个跨模态语义定位网络来研究模型从图像中分离语义属性的能力;(2)采用了属性级对比学习策略,进一步增强模型对细粒度视觉特征的区分能力,克服属性共现和不平衡问题;(3)提出了 考虑多模型目标的多任务学习策略。论文中发现,DUET在三个标准ZSL基准和一个带有知识图的ZSL基准上均取得了最先进的性能,其组成部分是有效的,预测是可解释的。

1.问题的提出

引出当前研究的不足与问题

零样本学习(Zero-shot learning, ZSL)旨在预测在训练期间从未出现过样本的未知类别。对于零样本图像分类来说,最有效且广泛使用的语义信息是属性,它们用于描述类别级别视觉特征。然而当前的方法难以区分图像间的微妙视觉差异,这不仅来源于细粒度属性注释的不足,还由于属性间的不平衡和共现现象。

属性不平衡问题

即有些属性频繁出现而有些属性很少出现
例如,在零样本场景分类数据集 SUN中,属性“树”和“云”分别与 301 和 318 个类相关联 ,而“铁路”和“消防”只与15和10个类相关联。

属性共现问题

例如,“花”与“叶”一起出现了39次,但单独的“花”只出现了10次;

这种分布偏差可能会影响模型对那些包含稀有属性或新属性组合的看不见的类的判断。

DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习
图一

解决方案

在本文中,作者提出了一种基于Transformer的端到端零样本学习方法(DUET),它通过自监督的多模态学习范式将来自预训练语言模型的潜在语义知识进行整合
贡献如下:
(1)开发了一个跨模态语义基准网络,以研究模型从图像中分离语义属性的能力;
(2)应用了基于属性级对比学习的策略,进一步增强模型对细粒度视觉特征的区分能力,克服属性的共现和不平衡问题
(3)提出了多任务学习策略考虑多模型目标。该方法可以同时在连续型的属性向量和离散型/结构化属性特征场景下工作,具有比较好的迁移泛化能力

关于监督学习,无监督学习,半监督学习,自监督学习,强化学习等
自监督学习 | (1) Self-supervised Learning入门
强化学习与监督学习和无监督学习有什么区别?
【深度学习】04 机器学习类型:监督学习 半监督学习 无监督学习 强化学习视频
深度学习常见名词概念:Sota、Benchmark、Baseline、端到端模型、迁移学习等的定义

2.数据集和模型构建

数据集

  • 三个配备标准属性的 ZSL 基准数据集 AWA2、CUB、SUN及其在(Xian 等人,2019)中提出的分割
  • 以及知识图谱基准数据集 AWA2-KG,它与 AWA2 具有相同的分割,但包含有关层次类和属性的语义信息,用于评估。

传统的零样本学习范式v.s. DUET学习范式

传统的零样本学习模式主要强调利用更多外部类别知识、进行数据增强,或研究更好的视觉编码器。相比而言,该框架强调跨模态模型的知识迁移(图二所示)。

传统:强调利用更多外部类别知识、进行数据增强,或研究更好的视觉编码器
DUET:强调跨模态模型的知识迁移
DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习
图二

DUET 模型总览

DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习
图三

DUET由三部分组成:
(1)特征到序列转换(FST)模块,它将每个类的属性统一为文本格式;
(2) 跨模态语义定位 (CSG) 模块,可通过跨模态掩模重建 (CMR) 将知识从 PLM 转移到视觉变换器编码器;
(3)属性级对比学习(ACL)模块,以自监督的方式增强CSG中的信号。

利用预训练语言模型(PLMs)的知识,以自监督的方式将知识转移到视觉转换器编码器中,从而实现对细粒度语义的有效定位。具体来说,其利用基于提示(prompt)的特征序列转换(FST),将不同类型的属性转换为文本序列。通过跨模态的语义定位网络(CSG,Cross-modal Semantic Grounding)和属性级对比学习(ACL,attribute-level contrastive learning)机制,利用跨模态的掩码复原(CMR,cross-modal mask reconstruction)训练目标从PLM中传递语义知识,同时缓解属性不平衡和共现问题,提高模型对细粒度视觉特征的区分能力。

属性级别对比学习

本文引入了一个巧妙的属性级别对比学习的模式,让模型来重点关注那些整体相似的图像中,容易造成困扰的细粒度特征差异。

  • 第一步是属性值序列化,文章从nlp中广泛运用的prompt中获得启发,借鉴表格预训练中的序列化模式,将图片属性值以key: [value,…]的形式进行文本序列化。这样做的好处是可以兼容多种不同的属性格式,包括知识图谱(KG)形式,向量形式,离散格式。当然,为了增加属性分布的多样性(diversity),作者对属性列表进行了基于概率的剪枝(attributes pruning),目的是为了防止模型因为属性的频繁共现而陷入懒惰学习。
    DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习

  • 跨模态的掩码复原。图像和文本同时输入,文本掩码,让模型强制从图像信息中获得相关属性来恢复掩码。这种方法其实在早期的多模态预训练模型中非常见,目的是让模型对齐视觉/语言的理解。而本文用一种巧妙的方法,让视觉模型的零样本学习能力得到了强化:
    – 使用预训练的语言模型(Bert)+预训练视觉模型(ViT,Swin,DeiT等),通过添加跨模态注意力层(cross-attention layer)进行桥接,而不是直接用多模态预训练模型。这样的好处是可以最大程度利用语言模型的语义信息和视觉模型的理解能力
    – 在视觉模型选择上,规避掉了使用ImageNet-21K进行预训练的模型,避免零样本测试过程中样本泄露。(测试集的图片不应该在预训练过程见过)
    属性级别的对比学习(Attribute-level Contrastive Learning)。本文的核心贡献点,可以用图1c表示:对于一个目标样本,选择与其整体特征相似度高的作为负样本,与其整体特性相似度低的作为正样本。对于一个正负样本对,其需要与目标样本有公共的属性key(比如“羽毛图案”),在这种情况下,对负样本的要求是,其他属性尽可能相似,而“羽毛图案”不同; 对正样本的要求是,其他属性尽可能不同,而“羽毛图案”相同;最后,在属性的掩码-恢复过程中,模型被迫找到两个差异悬殊图片中细粒度的属性交集,两个非常相似图片中细粒度的属性差异,从而实现属性感知的解耦。

正负样本解释:

对于目标样本:
正样本:与其整体特性相似度,其他属性尽可能不同,而“羽毛图案”相同
负样本:与其整体特征相似度,其他属性尽可能相似,而“羽毛图案”不同
正负样本对,需要与目标样本有公共的属性key(比如“羽毛图案”)
DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习

3.结果分析

DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习
本文作为语言模型在零样本学习上的第一次尝试,在不同数据集上取得了优越甚至sota的效果。其中较为明显地看到,在 标准ZSL数据集(AWA2,CUB,SUN)上,相比于传统ResNet-based的方法,视觉预训练模型对于可见类的预测效果有明显提升(Seen class)。而在 K-ZSL数据集 上,模型也可以达到SOTA效果。此外,模型还获得了细粒度属性预测的附带能力,这是相比传统模型的额外优势。
DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习

VIT-based vision transformer encoder.

为了进一步了解论文中的模型,论文中报告了使用 ViT-base(Dosovitskiy 等人,2021)作为视觉编码器的 DUET 结果。对比于 2 个最近的基于 ViT 的 ZSL 方法,ViT-ZSL 和 IEAM-ZSL 。如图 4(b) 所示,DUET 大幅超越了这两种方法,并且也超过了论文中的 SOTA 性能 (H) 4.8%。这表明论文中的 DUET 极大地改善了原始vision transformer较差的 ZSL 能力。可以认为,通过插入更好的vision transformer encoder,性能将进一步提高。

消融研究

DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读,知识图谱论文,论文阅读,知识图谱,人工智能,迁移学习,机器学习

消融研究解释

(1) 冻结language transformer encoder时,性能急剧下降。虽然它可以减少整体可学习参数,但它使模型更难理解提示、文本属性和视觉特征之间的特殊关系。

(2)仅用prompt作为无提示的序列输入
(3)仅concatenating attribute作为无提示的序列输入
论文中观察到采用半序列化属性的 FST 策略确实有利于论文中的模型,提高了 4.3%。

(4)随机屏蔽属性

属性短语掩码(APM)。论文中应用 APM 策略在每个步骤中屏蔽完整的属性短语,然后敦促模型恢复它。论文中认为属性集合中频率较低的判别属性更重要。因此,论文中通过**线性加权随机采样(LWRS)**策略对要屏蔽的目标属性进行采样

(5)不进行属性剪枝
(6)放弃class-level对比学习导致下降0.8%。这一点是因为对比学习可以通过缩小潜在空间中类内的距离来帮助模型学习更好的视觉表示。
(7)应用完整的CSG

此外,论文中的可插拔 ACL 模块在 CSG 的基础上进一步将性能提高了3.5%,这说明这两个模块都是有益的。

属性级对比学习(ACL)模块

4.结论与启示

结论总结

在本文中,论文中提出了一种名为 DUET 的端到端 ZSL 框架,以解决零样本图像分类中众所周知的属性不平衡和共现问题。论文中设计了一种具有新颖的属性级对比学习机制的跨模态语义定位网络,以增强模型对新类的判别能力,可以很好地解决零样本学习中的属性不平衡和共现问题。通过广泛的消融研究以及在具有实值和二元值属性的四个 ZSL 基准上与相当多最先进的方法进行比较,论文中证明了 DUET 的有效性及其对解释的支持。

启发

PLMs的潜在语义知识引入

DUET通过整合PLMs中的潜在语义知识,采用自监督多模态学习,在ZSL任务上取得了卓越的性能。可以认为,利用PLMs的知识能够有效提高ZSL的性能。

多模态,跨模态整合

DUET引入了一个跨模态语义定位网络,用于分离图像中的语义属性。在ZSL中,理解图像中的语义属性可能是提高性能的关键因素。
文本+图像 信息整合

细粒度角度考虑

DUET采用了属性级对比学习策略,以进一步提高模型对细粒度视觉特征的区分能力,克服了属性不平衡和共现的问题。
类级别 —> 属性级别文章来源地址https://www.toymoban.com/news/detail-797019.html

到了这里,关于DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读:MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving

    来源:2023 CVPR 题目:自动驾驶的多模态三维语义分割 原文链接:https://arxiv.org/abs/2303.08600v1 代码链接:https://github.com/jialeli1/lidarseg3d 激光雷达和摄像机是自动驾驶三维语义分割的两种方法。由于缺乏足够的激光点,目前流行的仅使用lidar的方法在小的和遥远的物体上严重存在

    2024年02月03日
    浏览(60)
  • 第二十一章:CCNet:Criss-Cross Attention for Semantic Segmentation ——用于语义分割的交叉注意力

    原文题目:《CCNet:Criss-Cross Attention for Semantic Segmentation 》 原文引用:Huang Z, Wang X, Huang L, et al. Ccnet: Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 603-612. 原文链接: https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_CCNet_Criss

    2024年02月16日
    浏览(42)
  • RIS 系列 Mask Grounding for Referring Image Segmentation 论文阅读笔记

    写在前面   一篇 Arxiv 上面的新文章,看看清华大佬们的研究。 论文地址:Mask Grounding for Referring Image Segmentation 代码地址:原论文说将会开源,静待佳音~ 预计提交于:CVPR 2024 Ps:2023 年每周一篇博文阅读笔记,主页 更多干货,欢迎关注呀,期待 6 千粉丝有你的参与呦~   

    2024年02月03日
    浏览(50)
  • Multimodal Contrastive Training for Visual Representation Learning

    parameterize the image encoder as f i q _{iq} i q ​ query feature q i i _{ii} ii ​ ,key feature k i i _{ii} ii ​ parameterize the textual encoder as f c q ( ⋅ ; Θ q , Φ c q ) f_{cq}(·; Θ_q, Φ_{cq}) f c q ​ ( ⋅; Θ q ​ , Φ c q ​ ) ,momentum textual encoder as f c k ( ⋅ ; Θ k , Φ i k ) f_{ck}(·; Θ_k, Φ_{ik}) f c k ​ ( ⋅; Θ

    2024年02月01日
    浏览(41)
  • 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation

    2023-RecSys https://github.com/Tokkiu/ECL 对比学习(CL)有利于对具有信息性自我监督信号的顺序推荐模型的训练。 现有的解决方案应用一般的顺序数据增强策略来生成正对,并鼓励它们的表示是不变的。 然而,由于用户行为序列的固有属性,一些增强策略,如项目替代,可能会导致

    2024年01月18日
    浏览(43)
  • 论文阅读:Heterogeneous Graph Contrastive Learning for Recommendation(WSDM ’23)

    论文链接 在推荐系统中,图神经网络在建模图结构数据上已经变成一个强有力的工具。但是现实生活的推荐语义通常涉及异质关系(像用户的社交关系,物品知识关系的依赖),这些都包含丰富的语义信息去提升表征能力的学习。同时,对比自监督学习在推荐系统中也取得了

    2024年02月08日
    浏览(46)
  • 《Contrastive Learning for Unpaired Image-to-Image Translation》

    原文及代码链接 https://github.com/taesungp/contrastive-unpaired-translation 图像转换任务中,输入-输出对应patch内容应该保持一致; 使用基于patch的 对比学习 方法实现 单向图像转换 ; 训练 数据不成对 ; 该方法促使输入-输出中对应patch映射到特征空间中的一个相似点,输入图像中其他

    2024年02月08日
    浏览(40)
  • CMNet:Contrastive Magnification Network for Micro-Expression Recognition 阅读笔记

    AAAI 2023的一篇文章,东南大学几位老师的工作,用于做微表情识别中的运动增强工作, 以下是阅读时记录的笔记。 摘要: However,existing magnification strategies tend to use the features offacial images that include not only intensity clues as inten-sity features,leading to the intensity representation deficientof c

    2024年02月20日
    浏览(38)
  • Curricular Contrastive Regularization for Physics-aware Single Image Dehazing

    提出了一种新的对比正则化方法,旨在解决现有方法中存在的问题。传统方法中使用的负样本通常与清晰的正样本图像相距较远,导致解空间受限。为了改进这一点,提出了一种新的对比正则化方法,利用了更接近正样本的负样本信息,这些负样本包括原始有雾图像以及其他

    2024年04月28日
    浏览(32)
  • 目标检测:Proposal-Contrastive Pretraining for Object Detection from Fewer Data

    论文作者:Quentin Bouniot,Romaric Audigier,Angélique Loesch,Amaury Habrard 作者单位:Université Paris-Saclay; Université Jean Monnet Saint-Etienne; Universitaire de France (IUF) 论文链接:http://arxiv.org/abs/2310.16835v1        目标检测是计算机视觉和图像处理领域的一个重要任务,其目标是在数字图像或视频

    2024年02月06日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包