优化改进YOLOv5算法之Wise-IOU损失函数

这篇具有很好参考价值的文章主要介绍了优化改进YOLOv5算法之Wise-IOU损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 Wise-IOU损失函数

边界框回归(BBR)的损失函数对于目标检测至关重要。它的良好定义将为模型带来显著的性能改进。大多数现有的工作假设训练数据中的样本是高质量的,并侧重于增强BBR损失的拟合能力。如果盲目地加强低质量样本的BBR,这将危及本地化性能。Focal EIoU v1被提出来解决这个问题,但由于其静态聚焦机制(FM),非单调FM的潜力没有被充分利用。基于这一思想,作者提出了一种基于IoU的损失,该损失具有动态非单调FM,名为Wise IoU(WIoU)。当WIoU应用于最先进的实时检测器YOLOv7时,MS-COCO数据集上的AP75从53.03%提高到54.50%。

现有工作记锚框为 ,目标框为 

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

 文章来源地址https://www.toymoban.com/news/detail-797077.html

 IoU 用于度量目标检测任务中预测框与真实框的重叠程度,定义为:

同时,IoU 有一个致命的缺陷,可以在下面公式中观察到。当边界框之间没有重叠时 , 反向传播的梯度消失。这导致重叠区域的宽度  在训练时无法更新

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

现有的工作考虑了许多与包围盒相关的几何因素并构造了惩罚项  来解决这个问题,现有的边界框损失都是基于加法的损失,并遵循以下范式:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

Distance-IoU
DIoU 将惩罚项定义为中心点连接的归一化长度:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

同时为最小包围框的尺寸 提供了负梯度,这将使得 增大而阻碍预测框与目标框重叠:  

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

但不可否认的是,距离度量的确是一个极其有效的解决方案,成为高效边界框损失的必要因子。EIoU 在此基础上加大了对距离度量的惩罚力度,其惩罚项定义为:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

Complete-IoU
在的基础上,CIoU 增加了对纵横比一致性的考虑:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

其中的描述了纵横比一致性:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

其中反向传播的梯度满足 ,也就是不可能为预测框的宽高提供同号的梯度。在前文对 DIoU 的分析中可知 DIoU 会产生负梯度,当这个负梯度与正好抵消时,会导致预测框无法优化。而 CIoU 对纵横比一致性的考虑将打破这种僵局。

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

 Scylla-IoU
Zhora Gevorgyan 证明了中心对齐的边界框会具有更快的收敛速度,以 angle cost、distance cost、shape cost 构造了 SIoU。其中 angle cost 描述了边界框中心连线与 x-y 轴的最小夹角:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

distance cost 描述了两边界框的中心点在x轴和y轴上的归一化距离,其惩罚力度与 angle cost 正相关。distance cost 被定义为:

shape cost 描述了两边界框的形状差异,当两边界框的尺寸不一致时不为 0。shape cost 被定义为:

与类似,它们都由 distance cost 和 shape cost 组成:  

Wise IoU

Wise-IoU v1
因为训练数据中难以避免地包含低质量示例,所以如距离、纵横比之类的几何度量都会加剧对低质量示例的惩罚从而使模型的泛化性能下降。好的损失函数应该在锚框与目标框较好地重合时削弱几何度量的惩罚,不过多地干预训练将使模型有更好的泛化能力。在此基础上,我们根据距离度量构建了距离注意力,得到了具有两层注意力机制的 WIoU v1:

  • ,这将显著放大普通质量锚框的 

,这将显著降低高质量锚框的,并在锚框与目标框重合较好的情况下显著降低其对中心点距离的关注

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

为了防止产生阻碍收敛的梯度,将从计算图 (上标 * 表示此操作) 中分离。因为它有效地消除了阻碍收敛的因素,所以我们没有引入新的度量指标,如纵横比。 

Wise-IoU v2
Focal Loss 设计了一种针对交叉熵的单调聚焦机制,有效降低了简单示例对损失值的贡献。这使得模型能够聚焦于困难示例,获得分类性能的提升。类似地,我们构造了的单调聚焦系数:

 在模型训练过程中,梯度增益随着的减小而减小,导致训练后期收敛速度较慢。因此,引入的均值作为归一化因子:

 

其中的为动量为m的滑动平均值,动态更新归一化因子使梯度增益整体保持在较高水平,解决了训练后期收敛速度慢的问题  

Wise-IoU v3
定义离群度以描述锚框的质量,其定义为:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

离群度小意味着锚框质量高,我们为其分配一个小的梯度增益,以便使边界框回归聚焦到普通质量的锚框上。对离群度较大的锚框分配较小的梯度增益,将有效防止低质量示例产生较大的有害梯度。我们利用  构造了一个非单调聚焦系数并将其应用于 WIoU v1:

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

其中,当时, 使得。当锚框的离群程度满足(为定值)时,锚框将获得最高的梯度增益。由于是动态的,锚框的质量划分标准也是动态的,这使得 WIoU v3 在每一时刻都能做出最符合当前情况的梯度增益分配策略      

为了防止低质量锚框在训练初期落后,我们初始化使得的锚框具有最高的梯度增益。为了在训练的早期阶段保持这样的策略,需要设置一个小的动量来延迟接近真实值  的时间。对于 batch size 为的训练,我们建议将动量设置为:

 这种设置使得经过t轮训练后有yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测。在训练的中后期,WIoU v3 将小梯度增益分配给低质量的锚框以减少有害梯度。同时 WIoU v3 会聚焦于普通质量的锚框,提高模型的定位性能 

2 YOLOv5中添加Wise-IOU损失函数

yolov5-6.1版本中的iou损失函数是在utils/metrics.py文件定义的,在该文件添加以下关于Wise-IOU函数的代码,如下所示

import numpy as np
import torch, math

class WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''
    
    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)
    
    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()
    
    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1
    

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
        w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
    if scale:
        self = WIoU_Scale(1 - (inter / union))

    # IoU
    # iou = inter / union # ori iou
    iou = torch.pow(inter/(union + eps), alpha) # alpha iou
    if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - iou + (1 + eps))
                if Focal:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoU
                else:
                    return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif EIoU:
                rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
                rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIou
                else:
                    return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
            elif SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
                s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIou
                else:
                    return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
            elif WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return iou, torch.exp((rho2 / c2)) # WIoU v1
            if Focal:
                return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoU
            else:
                return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoU
    else:
        return iou  # IoU

然后在utils/loss.py文件中调用bbox_iou损失函数时,将WIoU设置为True即可。

yolov5改进w-iou,YOLOv5创新改进方法,算法,深度学习,YOLO,神经网络,目标检测

 

 

到了这里,关于优化改进YOLOv5算法之Wise-IOU损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLOV7改进-添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU

    yolov7中box_iou其默认用的是CIoU,其中代码还带有GIoU,DIoU, AlphaIoU,文件路径: utils/general.py ,函数名为: bbox_iou 我们可以看到函数顶部,有GIoU,DIoU,CIoU的bool参数可以选择,如果全部为False的时候,其会返回最普通的Iou,如果其中一个为True的时候,即返回设定为True的那个I

    2023年04月20日
    浏览(51)
  • 【目标检测算法】IOU、GIOU、DIOU、CIOU与YOLOv5损失函数

    classification loss 分类损失 localization loss, 定位损失(预测边界框与GT之间的误差) confidence loss 置信度损失(框的目标性 objectness of the box) 总的损失函数: classification loss + localization loss + confidence loss YOLOv5使用 二元交叉熵损失函数 计算类别 概率和目标置信度得分 的损失。 Y

    2024年01月19日
    浏览(46)
  • Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

    本文通过估计锚框的离群度定义一个动态聚焦机制(FM) f(β),β = L I o U L I o U frac{L_{IoU}}{L_{IoU}} L I o U ​ L I o U ​ ​ 。FM通过将小梯度增益分配到具有小β的高质量锚框,使锚框回归能够专注于普通质量的锚框。 同时,该机制将小梯度增益分配给β较大的低质量锚箱,有效削

    2024年02月12日
    浏览(50)
  • 计算机视觉 day94 DDH - YOLOv5:基于双IoU感知解耦头改进的YOLOv5,用于对象检测

    YOLOv5头部的分类任务和回归任务的共同分支会对训练过程造成伤害,分类得分与定位精度的相关性较低。我们提出了一种双iou感知解耦头(DDH),并将其应用于YOLOv5。改进后的模型命名为DDH-YOLOv5,在不显著增加FLOPS和参数的情况下,显著提高了模型的定位精度。在PASCAL VOC2007数据

    2024年02月16日
    浏览(44)
  • YOLOv5改进训练过程中置信度损失上升

            最近需要对yolov5网络框架进行改进,改进训练的过程当中发现了一个奇怪的问题。        从tensorboard的图像过程中看出,bbox_loss,cls_loss在训练预测之后正常下降,当时obj_loss置信度损失值在上升。这可把我给困住了,各方面都没有问题,困扰好久。       

    2024年02月08日
    浏览(48)
  • RT-DETR算法改进:最新Inner-IoU损失函数,辅助边界框回归的IoU损失,提升RT-DETR检测器精度

    💡 本篇内容 :RT-DETR算法改进:最新Inner-IoU损失函数,辅助边界框回归的IoU损失,提升RT-DETR检测器精度 💡本博客 改进源代码改进 适用于 RT-DETR目标检测算法 (ultralytics项目版本) 按步骤操作运行改进后的代码即可🚀🚀🚀 💡改进 RT-DETR 目标检测算法专属|芒果专栏

    2024年02月19日
    浏览(40)
  • YOLOv5改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

    本文给大家带来的是YOLOv5最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数 , 形成 InnerIoU、InnerSIoU、InnerWIoU等新版本损失函数,同时还结合了Focus和AIpha思想 , 形成的新的损失函数,其中Inner的主要思想是:引入

    2024年01月25日
    浏览(41)
  • 优化改进YOLOv5算法之添加SE、CBAM、CA模块(超详细)

    目录 1 SENet 1.1 SENet原理 1.2 SENet代码(Pytorch) 1.3 YOLOv5中加入SE模块  1.3.1 common.py配置 1.3.2 yolo.py配置 1.3.3 创建添加RepVGG模块的YOLOv5的yaml配置文件 2 CBAM 2.1 CBAM原理 2.2 CBAM代码(Pytorch) 2.3 YOLOv5中加入CBAM模块  2.3.1 common.py配置 2.3.2 yolo.py配置 2.3.3 创建添加CBAM模块的YOLOv5的yaml配

    2024年04月17日
    浏览(39)
  • YOLOv5改进系列(11)——添加损失函数之EIoU、AlphaIoU、SIoU、WIoU

    【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

    2024年02月11日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包