数据分析-Pandas如何整合多张数据表

这篇具有很好参考价值的文章主要介绍了数据分析-Pandas如何整合多张数据表。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据分析-Pandas如何整合多张数据表

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中表格重整,重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客


本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas


数据准备

拿到数据后,很多情况下数据分散在多张表格中,不能直接用,这就需要对数据进行加工处理。

比如在air_quality数据中,大多数情况下NO2和pm25数据是在两张表中的。NO2数据

In [1]: air_quality_no2 = air_quality_no2[["date.utc", "location",
   ...:                                    "parameter", "value"]]
   ...: 

In [2]: air_quality_no2.head()
Out[2]: 
                    date.utc location parameter  value
0  2019-06-21 00:00:00+00:00  FR04014       no2   20.0
1  2019-06-20 23:00:00+00:00  FR04014       no2   21.8
2  2019-06-20 22:00:00+00:00  FR04014       no2   26.5
3  2019-06-20 21:00:00+00:00  FR04014       no2   24.9
4  2019-06-20 20:00:00+00:00  FR04014       no2   21.4



PM25数据,如下所示:

In [3]: air_quality_pm25 = air_quality_pm25[["date.utc", "location",
   ...:                                      "parameter", "value"]]
   ...: 

In [4]: air_quality_pm25.head()
Out[4]: 
                    date.utc location parameter  value
0  2019-06-18 06:00:00+00:00  BETR801      pm25   18.0
1  2019-06-17 08:00:00+00:00  BETR801      pm25    6.5
2  2019-06-17 07:00:00+00:00  BETR801      pm25   18.5
3  2019-06-17 06:00:00+00:00  BETR801      pm25   16.0
4  2019-06-17 05:00:00+00:00  BETR801      pm25    7.5

那么,Boss的各种数据分析处理要求就来了。

表格拼接

Boss:我就想合并不同监测站的 N O 2 和 P M 25 NO_2 和 PM_{25} NO2PM25监测值到一张相同结构的表中,表格结构相同,直接加到尾巴上。以下为图示

数据分析-Pandas如何整合多张数据表,金融风控,数据分析,pandas,数据挖掘,数据整合,多源表整合

concat

concat函数提供多个表格拼接到一个维度上,DataFrame有两个axis,可以是沿着列拼接,也可以沿着行拼接。默认如下:是axis=0,沿着列方向拼接起来。

In [5]: air_quality = pd.concat([air_quality_pm25, air_quality_no2], axis=0)

In [6]: air_quality.head()
Out[6]: 
                    date.utc location parameter  value
0  2019-06-18 06:00:00+00:00  BETR801      pm25   18.0
1  2019-06-17 08:00:00+00:00  BETR801      pm25    6.5
2  2019-06-17 07:00:00+00:00  BETR801      pm25   18.5
3  2019-06-17 06:00:00+00:00  BETR801      pm25   16.0
4  2019-06-17 05:00:00+00:00  BETR801      pm25    7.5

拼接的变化,可以通过shape属性观察到。如 axis=0时,行数变化:3178 = 1110 + 2068 行。这样操作:

In [7]: print('Shape of the ``air_quality_pm25`` table: ', air_quality_pm25.shape)
Shape of the ``air_quality_pm25`` table:  (1110, 4)

In [8]: print('Shape of the ``air_quality_no2`` table: ', air_quality_no2.shape)
Shape of the ``air_quality_no2`` table:  (2068, 4)

In [9]: print('Shape of the resulting ``air_quality`` table: ', air_quality.shape)
Shape of the resulting ``air_quality`` table:  (3178, 4)

事实上,对日期重排后,不同表格源数据的行排序也发生变化。

merge

In [10]: air_quality = air_quality.sort_values("date.utc")

In [11]: air_quality.head()
Out[11]: 
                       date.utc            location parameter  value
2067  2019-05-07 01:00:00+00:00  London Westminster       no2   23.0
1003  2019-05-07 01:00:00+00:00             FR04014       no2   25.0
100   2019-05-07 01:00:00+00:00             BETR801      pm25   12.5
1098  2019-05-07 01:00:00+00:00             BETR801       no2   50.5
1109  2019-05-07 01:00:00+00:00  London Westminster      pm25    8.0

用共同信息整合表格

如何依据某列属性,合并2个表格数据。比如学生身高,体重等体能信息表,和数理化等学科成绩表合并,住建是学生的ID。如下图所示:

数据分析-Pandas如何整合多张数据表,金融风控,数据分析,pandas,数据挖掘,数据整合,多源表整合

如果需要把每个监测站地理坐标,和实时的 N O 2 NO_2 NO2监测值和 P M 2.5 PM_{2.5} PM2.5监测值合并。关键是两点:地理坐标和监测值是不同的属性,表格大小不一致,需要扩充。此处用merge()函数,提供拼接函数的功能。

In [12]: stations_coord.head()
Out[12]: 
  location  coordinates.latitude  coordinates.longitude
0  BELAL01              51.23619                4.38522
1  BELHB23              51.17030                4.34100
2  BELLD01              51.10998                5.00486
3  BELLD02              51.12038                5.02155
4  BELR833              51.32766                4.36226

In [13]: air_quality = pd.merge(air_quality, stations_coord, how="left", on="location")

In [14]: air_quality.head()
Out[14]: 
                    date.utc  ... coordinates.longitude
0  2019-05-07 01:00:00+00:00  ...              -0.13193
1  2019-05-07 01:00:00+00:00  ...               2.39390
2  2019-05-07 01:00:00+00:00  ...               2.39390
3  2019-05-07 01:00:00+00:00  ...               4.43182
4  2019-05-07 01:00:00+00:00  ...               4.43182

[5 rows x 6 columns]

对于air_quality 的每一行,对应的坐标会从stations_coord中,拼到每行中,其中它们有共同的列:location,作为拼接的key。而使用left拼接,主要是air_quality放在左边的缘故。

In [24]: air_quality = pd.merge(air_quality, air_quality_parameters,
   ....:                        how='left', left_on='parameter', right_on='id')
   ....: 

In [25]: air_quality.head()
Out[25]: 
                    date.utc  ...   name
0  2019-05-07 01:00:00+00:00  ...    NO2
1  2019-05-07 01:00:00+00:00  ...    NO2
2  2019-05-07 01:00:00+00:00  ...    NO2
3  2019-05-07 01:00:00+00:00  ...  PM2.5
4  2019-05-07 01:00:00+00:00  ...    NO2

[5 rows x 9 columns]

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End


数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客文章来源地址https://www.toymoban.com/news/detail-797454.html

到了这里,关于数据分析-Pandas如何整合多张数据表的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 用Python做数据分析之数据表清洗

    对数据表中的问题进行清洗。主要内容包括对空值,大小写问题,数据格式和重复值的处理。这里不包含对数据间的逻辑验证。 处理空值(删除或填充) 我们在创建数据表的时候在 price 字段中故意设置了几个 NA 值。对于空值的处理方式有很多种,可以直接删除包含空值的数据

    2024年01月16日
    浏览(44)
  • 用Python做数据分析之生成数据表

    第一部分是生成数据表,常见的生成方法有两种,第一种是导入外部数据,第二种是直接写入数据。 Excel 中的文件菜单中提供了**外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。 获取外部数据 python支持从多种类型的数据导入。在开始使用 python 进行数据导

    2024年01月17日
    浏览(40)
  • chatgpt赋能python:如何安装Pandas库——Python(PythonProgramming)的数据分析库

    Pandas是Python编程语言的数据分析库,可以用于数据操作、数据处理和数据可视化等方面,包括读取、清理、转换和分析等。因此,Pandas库是Python数据科学生态系统的重要组成部分,这使得Pandas库已成为许多企业和组织的主要数据工具——如亚马逊、谷歌、斯坦福大学、NASA和考

    2024年02月07日
    浏览(67)
  • Python案例实现|租房网站数据表的处理与分析

     在综合实战项目中,“北京链家网”租房数据的抓取任务已在 上一篇 完成,得到了数据表bj_lianJia.csv,如图1所示。该数据表包含ID、城区名(district)、街道名(street)、小区名(community)、楼层信息(floor)、有无电梯(lift)、面积(area)、房屋朝向(toward)、户型(

    2024年02月15日
    浏览(43)
  • php开发实战分析(1):mysql操作字段(添加、删除、修改,多数据表中新增多个字段)

    要删除MySQL数据库中的字段,您需要执行以下步骤: 连接到MySQL数据库。您可以使用MySQL的PHP扩展或PDO(PHP数据对象)来实现连接。 使用MySQL扩展连接示例: 使用PDO连接示例: 构造SQL语句删除字段。使用 ALTER TABLE 语句来删除字段。在语句中使用 DROP COLUMN 指定要删除的

    2024年02月16日
    浏览(48)
  • PHP分析二维数据表(长度|数字字段|空值|纯姓名|英文用户名|科学计数|是否等长|是否唯一)

    先看图,后有完整代码    仅供娱乐!

    2024年02月22日
    浏览(62)
  • excel vba 将多张数据表的内容合并到一张数据表

    功能描述:  一个Excel文件有很多个 样式相同 的数据表, 需要将多张数据表的内容合并到一张数据表里。 vba实现代码如下:  文件链接:数据表合并.bas 下载后直接在excel 查看代码处导入文件即可。

    2024年02月11日
    浏览(45)
  • pandas数据分析之数据绘图

    一图胜千言,将信息可视化(绘图)是数据分析中最重要的工作之一。它除了让人们对数据更加直观以外,还可以帮助我们找出异常值、必要的数据转换、得出有关模型的想法等等。pandas 在数据分析、数据可视化方面有着较为广泛的应用。本文将通过实例介绍pandas的数据绘图

    2024年02月10日
    浏览(40)
  • 数据分析 — Pandas 数据处理

    Pandas (Python Data Analysis Library)是一个基于 NumPy 的 数据分析工具 ,专为解决数据分析任务而创建。它汇集了大量库和一些标准的数据模型,可以更高效地操作大型数据集。 数据结构: Pandas 提供了两种主要的数据结构,即 Series 和 DataFrame ,用于处理 一维和二维 数据。 标签

    2024年02月22日
    浏览(57)
  • Python中List类型数据结构广泛应用于各种场景中。然而,在数据分析和可视化过程中,经常需要将List转换为Pandas的DataFrame对象。那么如何将...

    Python中List类型数据结构广泛应用于各种场景中。然而,在数据分析和可视化过程中,经常需要将List转换为Pandas的DataFrame对象。那么如何将List转换为DataFrame对象呢?本文将介绍如何使用Python中Pandas库将List转换为DataFrame,并进一步将其转换为字符串。 将Python List转换为Pandas D

    2024年02月15日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包