Pytorch+PyG实现GCN(图卷积网络)

这篇具有很好参考价值的文章主要介绍了Pytorch+PyG实现GCN(图卷积网络)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

大家好,我是阿光。

本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。

正在更新中~ ✨

gcn pytorch源码,图神经网络,pytorch,网络,深度学习,人工智能,GCN

🚨 我的项目环境:文章来源地址https://www.toymoban.com/news/detail-797972.html

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版

到了这里,关于Pytorch+PyG实现GCN(图卷积网络)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习理论】(5) 图卷积神经网络 GCN

    尽管在过去的几年中,神经网络的兴起与成功应用使得许多目标检测、自然语言处理、语音识别等领域都有了飞跃发展,但是将 RNN 或者GCN这样的深度学习模型拓展到任意结构的图上是一个有挑战性的问题。 受限于传统深度学习方法在处理非欧式空间数据上的局限性,基于图

    2024年02月11日
    浏览(43)
  • 故障诊断 | 一文解决,GCN图卷积神经网络模型的故障诊断(Matlab)

    故障诊断 | 一文解决,GCN图卷积神经网络模型的故障诊断(Matlab) GCN(Graph Convolutional Network)是一种基于图结构数据进行卷积操作的神经网络模型。它在处理图数据上展现了很好的性能,特别适用于节点分类、图分类和图生成等任务。 GCN模型的核心思想是将图结构数据转化

    2024年04月11日
    浏览(121)
  • 深入浅出【图卷积神经网络GCN】从 邻接矩阵、特征值矩阵、单位阵、度矩阵 入手,深刻理解融合邻居节点(信息) | GCN从公式到代码实现 全过程 | 在Cora数据集上实现节点分类任务

      这个世界虽然破破烂烂,可总有一些人在缝缝补补,以耀眼的光芒照耀这片大地。   🎯作者主页: 追光者♂🔥          🌸个人简介:   💖[1] 计算机专业硕士研究生💖   🌟[2] 2022年度博客之星人工智能领域TOP4🌟   🏅[3] 阿里云社区特邀专家博主🏅   🏆[4] CSDN-人

    2024年02月13日
    浏览(42)
  • Pytorch实现GCN(基于PyTorch实现)

    2023年04月20日
    浏览(42)
  • 四十八.图卷积网络(GCN)

    CNN 在图像识别等任务中具有重要作用,主要是因为 CNN 利用了图片(信号)在其域中的局部平移不变性。由于图结构不存在平移不变性,所以 CNN 无法直接在图上进行卷积。 CNN 之所以能成为图像领域的明珠却很少应用于其他领域原因是:「图片是一个规整的二维矩阵」,无论

    2024年02月14日
    浏览(36)
  • PyTorch+PyG实现图神经网络经典模型目录

    大家好,我是阿光。 本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环

    2024年02月03日
    浏览(44)
  • 图卷积网络(Graph Convolution Network,GCN)

    目录 一、前言 二、GCN原理 三、GCN用于节点分类 四、总结 在图神经网络出现之前,一般的神经网络只能对常规的欧式数据进行处理,其特点就是节点有固定的排列规则和顺序,如2维网格和1维序列。  近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受

    2024年02月04日
    浏览(34)
  • 【AI基本模型】图卷积网络GCN简化原理

    目录 一、说明 二、图卷积网络 三、图卷积网络是如何工作的? 四、如何手动计算图卷积网络(GCN)? 4.1 构建网络 4.2 开始执行训练(参见上图)  五、图卷积网络的应用         图卷积网络 (GCN) 于 2017 年推出,已成为分析和解释结构为图的数据的强大工具。对于非

    2024年04月27日
    浏览(32)
  • T-GCN:用于交通流预测的时序图卷积网络

     1.文章信息 本次介绍的文章是2020年发表在IEEE 智能交通系统汇刊上的《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》。 2.摘要 为了同时捕获空间和时间依赖性,本文提出了一种新的基于神经网络的交通流预测方法——时间图卷积网络(T-GCN)模型,该模型将图卷积网络

    2024年02月16日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包