自动驾驶轨迹规划之碰撞检测(二)

这篇具有很好参考价值的文章主要介绍了自动驾驶轨迹规划之碰撞检测(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

目录

1.基于凸优化

2.具身足迹

3. ESDF


自动驾驶轨迹规划之碰撞检测(一)-CSDN博客

大家可以先阅读之前的博客 

1.基于凸优化

以此为代表的算法则是OBCA

无论是自车还是障碍物都可以表示为凸多边形,因此可以表示为多个超平面围成的空间

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

同时,自车与障碍物的避撞表达式就可以写成如下式子

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

然后就可以作为碰撞约束加入这样一个包含边界约束的最优控制问题中

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

感兴趣的可以参考原文Optimization-Based Collision Avoidance | IEEE Journals & Magazine | IEEE Xplore 

2.具身足迹

这是一个解决连续碰撞检测的概念,因为常用的碰撞检测算法常用于离散点的碰撞检测,忽略了离散点之间可能产生的碰撞,如下图所示

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

而具身足迹的意思则是在两个离散点之间自动驾驶汽车自身所覆盖的足迹,这并不是一个新的概念,计算机图形学中的扫掠体与这个具身足迹的意义相同。

李柏老师用矩形框去近似具身足迹,也就实现了连续碰撞检测,但是有些保守,不适合狭窄空间,但是安全性较好,具体结合曲率去分析这个具身足迹的性质可以参考原文

Embodied Footprints: A Safety-Guaranteed Collision-Avoidance Model for Numerical Optimization-Based Trajectory Planning | IEEE Journals & Magazine | IEEE Xplore

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

高飞老师团队在IROS2023里提出了一种隐式SDF,里面也就用到了扫掠体,也就是三维的具身足迹,以连续可微的形式进行避障

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶

Continuous Implicit SDF Based Any-Shape Robot Trajectory Optimization | IEEE Conference Publication | IEEE Xplore

3. ESDF

Euclidean Signed Distance Functions,这是一种地图的形式,常用于无人机导航。它可以很方便地对障碍物进行距离和梯度信息的查询,对空中机器人的在线运动规划具有重要意义。

但ESDF不仅有针对于环境的也有针对机器人自身的,针对机器人自身的ESDF可以让任意形状的机器人的碰撞检测变得更加容易,感兴趣的可以阅读

[2306.16046] Robo-centric ESDF: A Fast and Accurate Whole-body Collision Evaluation Tool for Any-shape Robotic Planning (arxiv.org)

自动驾驶轨迹规划之碰撞检测(二),自动驾驶轨迹规划算法,游戏引擎,算法,自动驾驶文章来源地址https://www.toymoban.com/news/detail-798291.html

到了这里,关于自动驾驶轨迹规划之碰撞检测(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [自动驾驶算法][从0开始轨迹预测]:二、自动驾驶系统中常用的坐标系及相应的转换关系

    写在前面:上一篇文章中,我们介绍了坐标转换的基础知识,接下来,我们将介绍由汽车的传感器到全局定位会涉及到的若干个坐标系统。 下图是自动驾驶系统中常见的坐标系统: ​ 一般来说, 典型的定位和建图场景情况,不同坐标系之间的关系如下: ​ 环境传感器数据

    2024年01月16日
    浏览(49)
  • [自动驾驶算法][从0开始轨迹预测]:一、坐标系和坐标系变换

    既然要从0开始轨迹预测,那从哪开始写起呢?回想下自己的学习历程,真正有挑战性的不是模型结构,不是繁琐的训练和调参,而是数据的制作!!! 笔者自认为不是一个数学基础牢固的人,那么我们的轨迹预测之旅就从坐标转换开始吧~~~ 由难至简,才能做到【删繁就

    2024年01月22日
    浏览(52)
  • 自动驾驶路径规划——Dijkstra算法

    这个学期学校开设了相应的课程,同时也在学习古月居机器人学系列的《基于栅格地图的机器人路径规划指南》,为了巩固知识,方便自己的学习与整理,遂以学习笔记的形式记录。      深度优先搜索( Depth First Search , DFS ) :首先从某个顶点出发,依次从它的各个未被

    2024年01月22日
    浏览(45)
  • Phillweston 自动驾驶 决策规划算法 面经

    By: Phillweston 注: 原创链接如下: 详细!自动驾驶规划控制算法工程师面经(具体题目+回答思路) 本人引用了此链接中的提问内容,并根据自己的想法写了部分回答,回答部分仅供参考。 Dijstra算法,算法流程 初始化 检验从所有已标记的点k到其他直接连接的未标记的点j的

    2024年02月11日
    浏览(47)
  • 自动驾驶路径规划——A*(Astar)算法

         最佳优先搜索(BFS) ,又称A算法,是一种启发式搜索算法(Heuristic Algorithm)。[不是广度优先搜索算法( Breadth First Search , BFS )]     BFS算法在广度优先搜索的基础上, 用启发估价函数对将要被遍历到的点进行估价 ,然后选择代价小的进行遍历,直到找到目标节点

    2024年02月01日
    浏览(52)
  • 自动驾驶路径规划——基于概率采样的路径规划算法(RRT、RRT*)

        在上一讲中,我们学习了 基于概率采样的路径规划算法——PRM算法,这一讲我们继续学习基于概率采样的路径规划算法——RRT、RRT*。     快速探索随机树(RRT)由Steven M. LaValle和James J. Kuffner Jr开发, 是对状态空间中的采样点进行碰撞检测,避免了对空间的建模

    2024年02月07日
    浏览(51)
  • 自动驾驶感知——激光雷达物体检测算法

    输入 ❖ 点:X, Y, Z和反射强度R ❖ 点云:多个点的集合(无序的,非结构化的数据) 输出 ❖ 目标的类别和置信度 ❖ 目标的边框(BoundingBox) 中心点3D坐标,长宽高,旋转角度 ❖目标的其它信息 速度,加速度等 算法 ❖ 点云表示:点视图,俯视图,前视图     如下表所

    2024年02月06日
    浏览(94)
  • 自动驾驶算法(三):RRT算法讲解与代码实现(基于采样的路径规划)

    目录 1 RRT算法原理 2 RRT算法代码解析 3 RRT完整代码         RRT算法的全称是快速扩展随机树算法(Rapidly Exploring Random Tree),它的想法就是从根结点长出一棵树当树枝长到终点的时候这样就能找到从终点到根节点的唯一路径。         算法流程:         首先进行初始化

    2024年02月06日
    浏览(53)
  • 自动驾驶算法/规划决策控制算法面经汇总、学习路线、面经心得

    本人985硕,自动驾驶从业者,曾面试过大部分自动驾驶公司、一部分机器人公司以及一些主机厂,方向主要是规划算法、规控算法、规划决策算法等方向。算法的面试难度每年都在不断提高,网友调侃从诸神黄昏到黑夜,可见算法面试有一定难度。 首先要了解自动驾驶算法主

    2024年02月02日
    浏览(82)
  • 自动驾驶环境感知之激光雷达物体检测算法

    前言 :视觉感知包括二维和三维视觉感知,其最终目的是为了获取三维世界坐标系下感兴趣的目标和场景的信息。单目相机下,需要几何约束或者海量数据来学习,以此来推测三维信息。双目相机下,可基于立体视觉原理来计算目标的深度信息,但在光照条件比较差或者纹理

    2024年01月23日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包