【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列

这篇具有很好参考价值的文章主要介绍了【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同 :unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构

unordered_set:

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

与set的区别在于不支持方向迭代器,只是单向迭代器,其他接口基本与set相似

int main()
{
	unordered_set<int> us;
	us.insert(10);
	us.insert(1);
	us.insert(10);
	us.insert(3);
	us.insert(4);
	us.insert(4);
	auto it = us.begin();
	while (it != us.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
	return 0;
}

无序+去重

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

unordered_map:

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

迭代器也是单向迭代器,其他也基本与map相似

int main()
{
	unordered_map<string, int> countMap;
	string arr[] = { "苹果","香蕉","苹果" };
	for (auto& e : arr)
	{
		auto it = countMap.find(e);
		/*if (it == countMap.end())
		{
			countMap.insert(make_pair(e, 1));
		}
		else
		{
			it->second++;
		}*/
		countMap[e]++;
	}
	for (auto& kv : countMap)
	{
		cout << kv.first << ":" << kv.second << endl;
	}
	return 0;
}

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

unordered_map的桶操作

函数声明 功能介绍
size_t bucket_count()const 返回哈希桶中桶的总个数
size_t bucket_size(size_t n)const 返回n号桶中有效元素的总个数
size_t bucket(const K& key) 返回元素key所在的桶号

实际运用:

在长度 2N 的数组中找出重复 N 次的元素

给你一个整数数组 nums ,该数组具有以下属性:

nums.length == 2 * n.
nums 包含 n + 1 个 不同的 元素
nums 中恰有一个元素重复 n 次
找出并返回重复了 n 次的那个元素。

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

class Solution {
public:
    int repeatedNTimes(vector<int>& nums) {
        unordered_map<int,int> CountMap;
        //统计次数
        for(auto& e:nums)
        {
            CountMap[e]++;
        }
        //符合条件
        for(auto&kv:CountMap)
        {
            if(kv.second==nums.size()/2)
                return kv.first;
        }
        return -1;
    }
};

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

insert\find\erase性能比较:随机数下unordered系列效率更高,但是有序数的情况下就不行了

int main()
{
	const size_t N = 1000000;

	unordered_set<int> us;
	set<int> s;

	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; ++i)
	{
		v.push_back(rand());
	}

	size_t begin1 = clock();
	for (auto e : v)
	{
		s.insert(e);
	}
	size_t end1 = clock();
	cout << "set insert:" << end1 - begin1 << endl;

	size_t begin2 = clock();
	for (auto e : v)
	{
		us.insert(e);
	}
	size_t end2 = clock();
	cout << "unordered_set insert:" << end2 - begin2 << endl;


	size_t begin3 = clock();
	for (auto e : v)
	{
		s.find(e);
	}
	size_t end3 = clock();
	cout << "set find:" << end3 - begin3 << endl;

	size_t begin4 = clock();
	for (auto e : v)
	{
		us.find(e);
	}
	size_t end4 = clock();
	cout << "unordered_set find:" << end4 - begin4 << endl;

	cout << s.size() << endl;
	cout << us.size() << endl;

	size_t begin5 = clock();
	for (auto e : v)
	{
		s.erase(e);
	}
	size_t end5 = clock();
	cout << "set erase:" << end5 - begin5 << endl;

	size_t begin6 = clock();
	for (auto e : v)
	{
		us.erase(e);
	}
	size_t end6 = clock();
	cout << "unordered_set erase:" << end6 - begin6 << endl;
	
	return 0;
}

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构


二、哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( ),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

哈希映射:key值跟存储位置建立关联关系

当向该结构中插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小:比如数据集合{1,7,6,4,5,9}

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

三、哈希冲突

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快问题。但是当插入元素44,会出现哈希冲突

哈希冲突:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞 ,比如44%10=4,但是4的位置已经被占用了。


四、哈希函数

如果哈希函数设计的不够合理就会引发哈希冲突。

哈希函数设计原则:

哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单

常见哈希函数

  1. 直接定制法–(常用)
    取关键字的某个线性函数为散列地址:HashKey= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况使用场景:适合查找比较小且连续的情况
  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:**Hash(key) = key% p(p<=m),**将关键码转换成哈希地址
  3. 平方取中法–(了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
  4. 折叠法–(了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
  5. 随机数法–(了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。通常应用于关键字长度不等时采用此法
  6. 数学分析法–(了解)
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。

哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


五、解决哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列

1.闭散列——开放定址法

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

  • 线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止

插入:通过哈希函数获取待插入元素在哈希表中的位置

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

删除 :采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索 ,比如上述例子中,如果删除27,此时要在找38,会发现在搜索过程就遇到了空,影响到了38的查找。解决方案:线性探测采用标记的伪删除法来删除一个元素 ,给每个位置加一个状态标识

在有限的空间内,随着我们插入的数据越来越多,冲突的概率也越来越大,查找效率越来越低,所以闭散列的冲突表不可能让它满了,所以引入了负载因子:

负载因子/载荷因子:等于表中的有效数据个数/表的大小,衡量表的满程度,在闭散列中负载因子不可能超过1(1代表满了)。一般情况下,负载因子一般在0.7左右。负载因子越小,冲突概率也越小,但是消耗的空间越大,负载因子越大,冲突概率越大,空间的利用率越高。

当负载因子大于0.7的时候就需要进行扩容了:扩容不能进行直接拷贝,映射的位置会随空间大小发生变化,所以需要重新计算映射的位置.

线性探测优点:逻辑简单,实现也简单
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,直到找到空为止,导致搜索效率降低

  • 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找(start+i),二次探测为了避免该问题,找下一个空位置的方法为:以i的2次方去进行探测(start+i^2):

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

但是本质上还是没有解决问题,占用别人的空间

2.代码实现

#include <vector>
template<class K>
 //仿函数
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};
//特化
template<>
struct HashFunc<string>
{
	size_t operator()(const string& key)
	{
		size_t hash = 0;
		for (auto ch : key)
		{
			hash *= 131;
			//顺序?abc,cba
			hash += ch;
		}
		return hash;
	}
};
//闭散列
namespace closehash
{
	enum State
	{
		EMPTY,
		EXIST,
		DELETE
	};

	template<class K,class V>
	struct HashData
	{
		pair<K, V> _kv;
		State _state = EMPTY;
	};
	template<class K,class V,class Hash = HashFunc<K>>
	class HashTable
	{
		typedef HashData<K, V> Data;
	public:
		HashTable()
			:_n(0)
		{
			_tables.resize(10);
		}

		bool Insert(const pair<K, V>& kv)
		{
			if (Find(kv.first))
				return false;
			if (_n * 10 / _tables.size() >= 7)
			{
				HashTable<K, V, Hash> newHT;
				newHT._tables.resize(_tables.size() * 2);
				for (auto& e : _tables)
				{
					if (e._state == EXIST)
					{
						newHT.Insert(e._kv);
					}
				}
				_tables.swap(newHT._tables);
			}
			Hash hf;
			size_t hashi = hf(kv.first)% _tables.size();
			while (_tables[hashi]._state == EXIST)
			{
				++hashi;
				hashi %= _tables.size();
			}
			_tables[hashi]._kv = kv;
			_tables[hashi]._state = EXIST;
			++_n;
			return true;
		}

		Data* Find(const K& key)
		{
			Hash hf;
			size_t hashi = hf(key) % _tables.size();
			size_t starti = hashi;
			while (_tables[hashi]._state != EMPTY)
			{
				if (_tables[hashi]._state == EXIST && key == _tables[hashi]._kv.first)
				{
					return &_tables[hashi];
				}
				++hashi;
				hashi %= _tables.size();
				//
				if (hashi == starti)
				{
					break;
				}
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			Data* ret = Find(key);
			if (ret)
			{
				ret->_state = DELETE;
				--_n;
				return true;
			}
			else
			{
				return false;
			}
		}
	private:
		vector<Data> _tables;
		size_t _n = 0;
	};

	void TestHT1()
	{
		HashTable<int, int> ht;
		int a[] = { 18, 8, 7, 27, 57, 3, 38, 18 };
		for (auto e : a)
		{
			ht.Insert(make_pair(e, e));
		}

		ht.Insert(make_pair(17, 17));
		ht.Insert(make_pair(5, 5));

		cout << ht.Find(7) << endl;
		cout << ht.Find(8) << endl;

		ht.Erase(7);
		cout << ht.Find(7) << endl;
		cout << ht.Find(8) << endl;
	}

	void TestHT2()
	{
		string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };

		//HashTable<string, int, HashFuncString> countHT;
		HashTable<string, int> countHT;
		for (auto& e : arr)
		{
			HashData<string, int>* ret = countHT.Find(e);
			if (ret)
			{
				ret->_kv.second++;
			}
			else
			{
				countHT.Insert(make_pair(e, 1));
			}
		}

		HashFunc<string> hf;
		cout << hf("abc") << endl;
		cout << hf("bac") << endl;
		cout << hf("cba") << endl;
		cout << hf("aad") << endl;
	}
}

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

代码需注意的点:

1.仿函数:考虑到统计出现次数:因为字符串不能够取模,所以我们可以给HashTable增加一个仿函数Hash,其可以将不能取模的类型转成可以取模的类型,同时把string特化出来解决字符串不能取模的问题

2.字符串哈希求法:考虑到顺序问题,比如abc,cba,如果只乘以131则结果是相同的,所以我们可以加上ch在乘以131

3.开散列——开链法

开散列:开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素,不一定要有序

开散列增容问题:

由于桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容。

开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突。

所以在元素个数刚好等于桶的个数时,可以给哈希表增容 。研究分析表明:素数作为哈希表的长度可以尽可能减小哈希冲突。所以可提前定义一个素数表。

4.代码实现

//开散列
namespace buckethash
{
	template<class K,class V>
	struct HashNode
	{
		pair<K, V> _kv;
		HashNode<K, V>* _next;
		HashNode(const pair<K, V>& kv)
			:_kv(kv)
			, _next(nullptr)
		{}
	};
	template<class K,class V,class Hash=HashFunc<K>>
	class HashTable
	{
		typedef HashNode<K, V> Node;
	public:
		HashTable()
			:_n(0)
		{
			_tables.resize(__stl_next_prime(0));
		}

		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				// 释放
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}

				_tables[i] = nullptr;
			}
		}

		bool Insert(const pair<K, V>& kv)
		{
			if (Find(kv.first))
			{
				return false;
			}
			if (_tables.size() == _n)
			{
                //消耗?
				/*HashTable<K, V, Hash> newHT;
				newHT._tables.resize(_tables.size() * 2);
				for (auto cur : _tables)
				{
					while (cur)
					{
						newHT.Insert(cur->_kv);
						cur = cur->_next;
					}
				}
				_tables.swap(newHT._tables);*/

				vector<Node*> newTables;
				newTables.resize(__stl_next_prime(_tables.size()), nullptr);
				for (size_t i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						size_t hashi = Hash()(cur->_kv.first) % newTables.size();
						cur->_next = newTables[hashi];
						newTables[hashi] = cur;
						cur = next;
					}
					_tables[i] = nullptr;
				}
				_tables.swap(newTables);
			}

			size_t hashi = Hash()(kv.first) % _tables.size();
			Node* newnode = new Node(kv);
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;
			return true;
		}

		Node* Find(const K& key)
		{
			size_t hashi = Hash()(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					return cur;
				}
				else
				{
					cur = cur->_next;
				}
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			size_t hashi = Hash()(key) % _tables.size();
			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					if (cur == _tables[hashi])
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}
					delete cur;
					--_n;
					return true;
				}
				else
				{
					prev = cur;
					cur = cur->_next;
				}
			}
			return false;
		}
		inline unsigned long __stl_next_prime(unsigned long n)
		{
			static const int __stl_num_primes = 28;
			static const unsigned long __stl_prime_list[__stl_num_primes] =
			{
				53, 97, 193, 389, 769,
				1543, 3079, 6151, 12289, 24593,
				49157, 98317, 196613, 393241, 786433,
				1572869, 3145739, 6291469, 12582917, 25165843,
				50331653, 100663319, 201326611, 402653189, 805306457,
				1610612741, 3221225473, 4294967291
			};

			for (int i = 0; i < __stl_num_primes; ++i)
			{
				if (__stl_prime_list[i] > n)
				{
					return __stl_prime_list[i];
				}
			}

			return __stl_prime_list[__stl_num_primes - 1];
		}

	private:
		vector<Node*> _tables;
		size_t _n = 0;
	};
	void TestHT1()
	{
		HashTable<int, int> ht;
		int a[] = { 18, 8, 7, 27, 57, 3, 38, 18,17,88,38,28 };
		for (auto e : a)
		{
			ht.Insert(make_pair(e, e));
		}

		ht.Insert(make_pair(5, 5));

		ht.Erase(17);
		ht.Erase(57);
	}
	void TestHT2()
	{
		string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };

		//HashTable<string, int, HashFuncString> countHT;
		HashTable<string, int> countHT;
		for (auto& e : arr)
		{
			auto ret = countHT.Find(e);
			if (ret)
			{
				ret->_kv.second++;
			}
			else
			{
				countHT.Insert(make_pair(e, 1));
			}
		}
	}

}

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列,转角遇见C++,哈希算法,c++,算法,数据结构


六、结语

开散列与闭散列比较
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间文章来源地址https://www.toymoban.com/news/detail-798314.html

到了这里,关于【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【C++】手撕哈希表的闭散列和开散列

    作者:დ旧言~ 座右铭:松树千年终是朽,槿花一日自为荣。 目标:手撕哈希表的闭散列和开散列 毒鸡汤:谁不是一边受伤,一边学会坚强。 专栏选自:C嘎嘎进阶 望小伙伴们点赞👍收藏✨加关注哟💕💕 谈到哈希表,大家都做过这样的题目,统计字符串的字母个数,像这

    2024年04月11日
    浏览(43)
  • 【C++进阶】哈希表开散列和闭散列的模拟实现(附源码)

    这里的闭散列和开散列解决哈希冲突的方法都是 除留余数法 。 一些哈希函数:字符串哈希算法 闭散列:也叫 开放定址法 ,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有 空位置,那么可以 把key存放到冲突位置中的“下一个” 空位置中去 。 如何找到

    2024年02月08日
    浏览(58)
  • 【数据结构】哈希表——闭散列 | 开散列(哈希桶)

    🐱作者:一只大喵咪1201 🐱专栏:《数据结构与算法》 🔥格言: 你只管努力,剩下的交给时间! 哈希(Hash):是一种方法,将数据的key值和存储位置建立关系。 在之前学习过的顺序结构以及平衡树中,所有数据的key值和存储位置之间都没有对应的关系。所以在查找一个数据

    2023年04月24日
    浏览(45)
  • 【C++】开散列哈希表封装实现unordered_map和unordered_set

    在未达成目的之前,一切具有诱惑力的事物都显得那么不堪一击 1. 在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N l o g 2 ​ N ,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。 最好的查询是

    2023年04月09日
    浏览(84)
  • C++利用开散列哈希表封装unordered_set,unordered_map

    1.之前我们已经实现了开散列的哈希表,今天我们来用它封装unordered_set,unordered_map 2.本文的封装比利用红黑树封装set和map更加复杂 建议大家先去看我的红黑树封装set和map再来看本文 因为有很多地方跟红黑树封装set和map时是同样的思路和方法,所以本文不会太去赘述一遍 因为un

    2024年03月24日
    浏览(55)
  • 【数据结构】哈希表的开散列和闭散列模拟

    在顺序和树状结构中,元素的存储与其存储位置之间是没有对应关系,因此在查找一个元素时,必须要经过多次的比较。 顺序查找的时间复杂度为0(N),树的查找时间复杂度为log(N)。 我们最希望的搜索方式:通过元素的特性,不需要对比查找,而是直接找到某个元素。 这一个

    2024年02月22日
    浏览(40)
  • 【数据结构】万字一文手把手解读哈希————(开/闭散列)解决哈希冲突完整详解(6)

    前言 大家好吖,欢迎来到 YY 滴 数据结构 系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁 主要内容含: 欢迎订阅 YY 滴C++专栏!更多干货持续更新!以下是传送门! YY的《C++》专栏 YY的《C++11》专栏 YY的《Linux》专栏 YY的《数据结构》专栏 YY的《C语言基础》专栏 YY的《

    2024年02月04日
    浏览(127)
  • Learning C++ No.25【开散列封装unordered_set和unordered_map】

    北京时间:2023/5/29/7:05,上星期更文一篇,且该篇博客在周三就写完了,所以充分体现,咱这个星期摆烂充分,哈哈哈!现在的内心情感没有以前那么从容了,这次摆的时间是有点久了,但本质影响不大,因为我现在还在码字,三天不学习,或者说是没有踏实学习,目前给我

    2024年02月07日
    浏览(43)
  • C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用

    目录 一、开散列的概念 1.1开散列与闭散列比较 二、开散列/哈希桶的实现 2.1开散列实现 哈希函数的模板构造 哈希表节点构造 开散列增容 插入数据 2.2代码实现 开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集

    2024年04月17日
    浏览(35)
  • 【C++】哈希(模拟实现unordered系列容器)

    1、模板参数列表的改造 K :关键码类型 V :不同容器V的类型不同。如果是 unordered_map,V 代表一个键值对;如果是 unordered_set,V 为 K。 KeyOfValue :因为 V 的类型不同,通过 value 取 key 的方式就不同,通过T的类型来获取 key 值。 HF :哈希函数仿函数对象类型,哈希函数使用除留

    2024年02月05日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包