2.1.2 一个关于y=ax+b的故事

这篇具有很好参考价值的文章主要介绍了2.1.2 一个关于y=ax+b的故事。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

跳转到根目录:知行合一:投资篇

已完成:
1、投资&技术
  1.1.1 投资-编程基础-numpy
  1.1.2 投资-编程基础-pandas
  1.2 金融数据处理
  1.3 金融数据可视化
2、投资方法论
  2.1.1 预期年化收益率
  2.1.2 一个关于y=ax+b的故事
3、投资实证
  [3.1 2023这一年] 被鸽


当看到一个在k线图上画直线的时候,斜率是可以自动计算的吗?

最佳拟合的直线,计算出来的斜率是多少?最佳拟合直线代表的年化是多少?

如果自己想画4%、8%、10%收益率的直线,怎么画呢?

1. 系统自己画!最佳拟合线

1.1. 沪深300的最佳拟合线

顾名思义,这就是对于散点图,画一条最佳拟合的直线。那什么又叫最佳拟合线?

最佳拟合直线是指,我们可以找到一条直线,样本点到该直线的[离差平方和]达到最小的直线。这条直线用公式y = ax + b表示。

a表示回归系数,b表示截距。

再简单的说,就是存在一条线,这条线,能让各个点,都比较“满意”地分布在其上下。

我们拿沪深300的历史收盘价作为散点图,来看看其所谓的最佳拟合线是什么样的。

import qstock as qs
import seaborn as sns
import numpy as np

sh300=qs.get_data('510300')
# 因为设想中,x轴,可以是一个顺序的数组,比如从0开始往后数,step为1。这其实就是暗合着,随着时间的增加,close是否能拟合一条向上的直线?
sh300['day'] = np.arange(0, sh300.shape[0], 1)

sns.set_style("white")
gridobj = sns.lmplot(x="day", y="close", data=sh300, 
                     ci=95, scatter_kws={'color': 'orange'}, line_kws={'color': 'green'}, markers='o')
2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

1.2. 横向对比:一个个算

看过了沪深300,肯定会有疑惑啊,总是要横向对比的吧?比如沪深300和中证500、券商ETF、红利ETF、房地产ETF、黄金ETF等标的,能进行横向对比来看谁的斜率(赚钱效应)更好吗?

Of course ,动手!

import qstock as qs
import seaborn as sns
import numpy as np

stocks_info = [
    {'code': '510300', 'name': '沪深300'},
    {'code': '510500', 'name': '中证500'},
    {'code': '512010', 'name': '医药ETF'},
    {'code': '512000', 'name': '券商ETF'},
    {'code': '516160', 'name': '新能源ETF'},
    {'code': '510800', 'name': '红利ETF'},
    {'code': '518880', 'name': '黄金ETF'},
    {'code': '512200', 'name': '房地产ETF'}
]
for stock in stocks_info:
    df=qs.get_data(stock['code'])
    # 因为设想中,x轴,可以是一个顺序的数组,比如从0开始往后数,step为1。这其实就是暗合着,随着时间的增加,close是否能拟合一条向上的直线?
    df['day'] = np.arange(0, df.shape[0], 1)
    df['标的'] = stock['name']

    sns.set_style("white")
    # 这个是seaborn中文乱码的处理。经过试验,在这里,plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'],这种设置是不行的。
    sns.set_style(rc= {'font.sans-serif':"Arial Unicode MS"})
    gridobj = sns.lmplot(x="day", y="close", data=df,  hue="标的", 
                         ci=95, scatter_kws={'color': 'orange'}, line_kws={'color': 'green'}, markers='o')

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

这里要说明一下,上面其实是一个个图生成的,然后我一张张图拼接起来的结果。

如果想直接横向着来看,还需要对数据进行标准化处理,如果不进行标准化,那比如不同标的的收盘价,差异很大,有的是十几块,像ETF,可能就是1块,那结果就很难看,就像下面这种:

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

1.3. 横向对比:数据标准化

所以,下面就是要将不同的标的进行标准化处理,这种标准化,意味着,将价格进行处理变成相对值,才可以进行比较,这里使用的是sklearn模块的StandardScaler,核心方法是fit_transform(df_all)。如果没有安装sklearn,需要先进行安装pip install -U scikit-learn

下面是一个完整的案例:

import qstock as qs
import pandas as pd

#默认日频率、前复权所有历史数据
#open:开盘价,high:最高价,low:最低价,close:收盘价 vol:成交量,turnover:成交金额,turnover_rate:换手率
# 沪深300, 中证500, 医药ETF, 券商ETF, 新能源ETF, 红利ETF, 黄金ETF, 房地产ETF
stocks_info = [
    {'code': '510300', 'name': '沪深300'},
    {'code': '510500', 'name': '中证500'},
    {'code': '512010', 'name': '医药ETF'},
    {'code': '512000', 'name': '券商ETF'},
    {'code': '516160', 'name': '新能源ETF'},
    {'code': '510800', 'name': '红利ETF'},
    {'code': '518880', 'name': '黄金ETF'},
    {'code': '512200', 'name': '房地产ETF'}
]
for stock in stocks_info:
    df = qs.get_data(stock['code'])  # 从qstock获取对应的股票历史数据
    stock['history_df'] = df         # 将其存在 history_df 这个key里面。

# 只保留收盘价,合并数据
df_all = pd.DataFrame()
for stock in stocks_info:
    df = stock['history_df']
    df = df[['close']]         # 只需要 date 和 close 2列就行了。
    df.rename(columns={'close': stock['name']}, inplace=True)  # 用股票的名字来重命名close列
    if df_all.size == 0:
        df_all = df
    else:
        df_all = df_all.join(df)  # join是按照index来连接的。

# print(df_all)

# 对dataframe的数据进行标准化处理
import sklearn
from sklearn import preprocessing
z_scaler = preprocessing.StandardScaler()   # 建立 StandardScaler 对象
z_data = z_scaler.fit_transform(df_all) #数据标准化(从第三列开始)
z_data = pd.DataFrame(z_data)                           #将数据转为Dataframe
z_data.columns = df_all.columns
df_all = z_data
print(df_all)


# 只保留收盘价,合并数据
df_new = pd.DataFrame()
for stock in stocks_info:
    df = df_all[[stock['name']]]
    df.columns = ['close']
    df['标的'] = stock['name']
    if df_new.size == 0:
        df_new = df
    else:
        df_new = pd.concat([df_new, df], axis=0)

print(df_new)
df_new['day'] = df_new.index

# 这个是seaborn中文乱码的处理。经过试验,在这里,plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'],这种设置是不行的。
sns.set_style(rc= {'font.sans-serif':"Arial Unicode MS"})
df = sns.lmplot(x="day", y="close",data=df_new,col="标的")

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

         close      标的
0    -1.316309   沪深300
1    -1.275999   沪深300
2    -1.284061   沪深300
3    -1.290107   沪深300
4    -1.290107   沪深300
...        ...     ...
2826 -2.711143  房地产ETF
2827 -2.684416  房地产ETF
2828 -2.702234  房地产ETF
2829 -2.666598  房地产ETF
2830 -2.675507  房地产ETF

[22648 rows x 2 columns]

1.4. 看图说话

从上面的横向对比图可以看出:

  1. 沪深300的斜率,是高于中证500的
  2. 券商ETF,基本是一条横线,说明什么?做T啊,稳赚不赔!
  3. 新能源ETF、房地产ETF,可能是时间还太短,所处的周期内,就是向下的。
  4. 其他的,黄金看的是长周期,可能是几十年,还是慎重为好;红利,说不好,不懂的就先不碰了。

2. 系统自己算!线性回归

2.1. 沪深300线性回归,斜率0.00099414

首先从 sklearn 下的 linear_model 中引入 LinearRegression,再创建估计器起名 model,设置超参数 normalize 为 True,指的在每个特征值上做标准化,这样会加速数值运算。(可能是版本不同,有时候会报错LinearRegression got an unexpected keyword argument 'normalize',此时反而要去掉normalize=True这个参数。)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

df=qs.get_data('510300')

model = LinearRegression()
model
x = np.arange(df.shape[0])
y = df['close']

X = x[:, np.newaxis]
model.fit( X, y )

print( model.coef_ )  # 斜率 0.00099414,就是y=ax+b的a
print( model.intercept_ )  # 截距 1.9,就是y=ax+b的b

# 根据上面计算的结果,我们绘制一个收盘价走势图和一条y=ax=b的直线
plt.plot( x, y,  linestyle='-', color='green' )
plt.plot(x, 0.00099414*x + 1.9, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

2.2. 沪深300线性回归的年化,年化8.5%

之前计算的沪深300最佳拟合的直线,斜率和截距:

plt.plot(x, 0.00099414*x + 1.9, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

沪深300,如果按照上面的直线来看,那:

起始点:1.9

终点:y=ax+b,即y=0.00099414*x + 1.9,最后的x,其实是x轴的个数,是:df.shape[0],也就是行数:x=2832;那么计算的y = 0.00099414 * 2832 + 1.9 = 4.71540448

按照上面的计算:

import math

begin = 1.9
end = 4.71540448
year = 2832/255.0

# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))

开始价=1.9, 最终价=4.71540448, year=11.105882352941176,年化收益率=0.0852895190354479

2.3. 沪深300首尾点的年化,4.72%

如果不考虑中间的波动,那沪深300的年化收益率计算:

import pandas as pd
import math

df=qs.get_data('510300')

begin = df['close'][0]
end = df['close'][-1]
year = df.shape[0]/255.0

# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))

开始价=2.004, 最终价=3.345, year=11.105882352941176,年化收益率=0.047211214375309396

2.4. 中证500线性回归,斜率0.0008

对比看下中证500斜率如何

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

df=qs.get_data('510500')

model = LinearRegression()
model
x = np.arange(df.shape[0])
y = df['close']

X = x[:, np.newaxis]
model.fit( X, y )

print( model.coef_ )  # 斜率 0.00080245,就是y=ax+b的a
print( model.intercept_ )  # 截距 4.353948387096773,就是y=ax+b的b

# 根据上面计算的结果,我们绘制一个收盘价走势图和一条y=ax=b的直线
plt.plot( x, y,  linestyle='-', color='green' )
plt.plot(x, 0.00080245*x + 4.353948387096773, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

2.5. 中证500线性回归的年化

计算中证500最佳拟合的直线,斜率和截距:

plt.plot(x, 0.00080245*x + 4.353948387096773, linestyle='--', color='r')  # 这个是根据最后计算的“斜率”和“截距”,再叠加绘制的斜线

起始点:4.353948387096773

终点:y=ax+b,即y=0.00080245*x + 4.353948387096773,最后的x,其实是x轴的个数,是:df.shape[0],也就是行数:x=2635;那么计算的y = 0.00080245 * 2635 + 4.353948387096773 = 6.468404137096773

按照上面的计算:

import math

begin = 4.353948387096773
end = 6.468404137096773
year = 2635/255.0

# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))

开始价=4.353948387096773, 最终价=6.468404137096773, year=10.333333333333334,年化收益率=0.039050907738202856

2.6. 中证500首尾点的年化

中证500年化收益率:

import pandas as pd
import math

df=qs.get_data('510500')

begin = df['close'][0]
end = df['close'][-1]
year = df.shape[0]/255.0

# 年化收益率计算
rate = math.pow(end / begin, 1.0 / year) - 1
print('开始价=%s, 最终价=%s, year=%s,年化收益率=%s' % (str(begin), str(end), str(year), str(rate)))

开始价=3.021, 最终价=5.279, year=10.333333333333334,年化收益率=0.055499799550948525

3. 自己画线-准备工作

3.1. 如何计算4%的年华收益率?

什么叫年化4%?这么理解,今年1月1日是1块钱,到年底的时候,是多少钱?1*(1+0.04) = 1.04元。

假设今年一共是250个交易日(所以250日线很重要),所以照理来说,每个交易日上涨大约就是 1.04/250 = 0.00416元。

3.2. pyecharts上画收盘折线图

我们要画的折线图,其实是沪深300的收盘价走势图。这个也比较容易,在之前 1.3 金融数据可视化中第1.2.2小节已经画过了,很简单。这里也为了不跳出,把代码贴出来。

#导入数据分析和量化常用库
import pandas as pd
import numpy as np
#导入pyecharts
from pyecharts.charts import *


df=qs.get_data('510300')

g=(Line()
  .add_xaxis(df.index.strftime('%Y-%m-%d').tolist())
  .add_yaxis('',df.close))
g.render_notebook()

就这么点代码,感谢cctv,错了,感谢python、pandas、pyecharts。

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

后面的完整案例,就是在此基础上,进一步优化了图形上的一些配置,可以在鼠标移动到上面hover的时候,能显示出来对应的点位信息,而已。

3.3. 如何在走势图上画直线?

pyecharts画直线,其实也是很简单的。

from pyecharts import options as opts
from pyecharts.charts import Line
import random
 
# 创建数据集合
x_data = [i for i in range(10)]
# y_data = [random.randint(-50, 50) for _ in x_data]
y_data = 2 * x_data
 
# 初始化 Line 对象
line = (Line()
        .add_xaxis(x_data)
        .add_yaxis("", y_data))
 
# 设置全局配置项
line.set_global_opts(title_opts=opts.TitleOpts(title="直线图"),
                     toolbox_opts=opts.ToolboxOpts())
 
line.render_notebook()
2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

4. 自己画线-完整案例

代码主要的流程:

  1. 定义要获取的标的,比如沪深300,代码510300。使用qstock获取日线历史行情数据。

  2. 直线画线的其实时间,比如可以定在 2016-02-25。(定在哪里,这个就见仁见智了,老股民画线有自己的心得。)

    当然,我们可以自己定起始时间。

  3. 根据我们想要的年华,比如4%,6%,8%,分别计算在此复合年化下的直线数值,以便在pyecharts画线的时候用到。

  4. 画图,收盘价折线图 + 4%直线 + 6%直线 + 8%直线。

from pyecharts.charts import Line
import pandas as pd
import pyecharts.options as opts
import qstock as qs

# 在线选色 http://tools.jb51.net/static/colorpicker/
security = '510300' # 510300   510500
start_date_str = '2016-02-25'  # 2016-02-25   2014-05-23
lines = [
    {'start_date_str': start_date_str, 'number_of_percent': 0.04, 'name_of_line': '预测值4%', 'color': '#cc0099'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.06, 'name_of_line': '预测值6%', 'color': '#16c79a'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.08, 'name_of_line':  '预测值8%', 'color': '#00d7ff'}
]


def calculate_new_col(df, number_of_percent, name_of_line, start_date_str):
    end = begin = df.loc[start_date_str, 'close']  # 2.6142 获取起始日的收盘价
    rate = number_of_percent  # 0.06  获取收益率预期值
    year = len(df.loc[start_date_str:].index) / 250  # 计算有多少年,以便计算收益率下的终值
    end *= ((1 + rate) ** year)  # 终值,**是次方运算
    slot = len(df.loc[start_date_str:].index) - 1  # 有多少个时间区间,将总收益平分(直线,是等差数列,平分总收益)
    per_step = (end - begin) / slot  # 将总收益平分(直线,是等差数列,平分总收益),每个slot递增 per_step
    # 计算新列(比如年化4%)的值
    row_keys = df.loc[start_date_str:].index
    this_day_value = begin
    for row_key in row_keys:
        df.loc[row_key, name_of_line] = this_day_value
        this_day_value = this_day_value + per_step
    df[name_of_line] = df[name_of_line].round(3)


# 加载数据
df = qs.get_data(security)
# 计算线条所需的数据
for item in lines:
    calculate_new_col(df=df, number_of_percent=item['number_of_percent'], name_of_line=item['name_of_line'], start_date_str=item['start_date_str'])
x_data = df.index.date.tolist()  # x轴所需的数据
close_data = df['close'].values.tolist()  # 收盘价数据

line = (
    Line(init_opts=opts.InitOpts(width="1400px", height="700px"))   # 设置图表大小
    .add_xaxis(x_data)  # 设置x轴, 需要加tolist

    .add_yaxis("收盘价",
                close_data,
                is_connect_nones=True,# 缺失值的处理
                symbol_size=10, # 标识的大小
                is_smooth=True,# 线条样式  , 是否设置成圆滑曲线
                linestyle_opts=opts.LineStyleOpts(width=1,color ='#000000',type_="solid"), # 线条颜色和宽度
                label_opts=opts.LabelOpts(is_show=True,position='top',color ='#000000'),# 文字标签的位置和颜色
                itemstyle_opts=opts.ItemStyleOpts(border_width=3, border_color="#000000", color="#000000"),# 标识的颜色和宽度
                )

    .set_global_opts(title_opts=opts.TitleOpts(title="%s趋势分析" % security,subtitle="", # 主标题
                                               title_textstyle_opts=opts.TextStyleOpts(font_size=30), #主标题字体大小
                                               pos_left='6%'), # 主标题位置
                     legend_opts=opts.LegendOpts(is_show=True,# 是否显示图例
                                                 pos_top="3%",# 图例位置
                                                 item_width=15,# 宽度
                                                 item_height=15,#高度
                                                 item_gap=10,# 图例间隔
                                                 textstyle_opts=opts.TextStyleOpts(font_size=15)), # 图例文字大小
                     tooltip_opts=opts.TooltipOpts(trigger="axis"),# 提示框触发, 按坐标轴
                     yaxis_opts=opts.AxisOpts(type_="value",
                                              axistick_opts=opts.AxisTickOpts(is_show=False),   # 刻度线不显示
                                              axisline_opts=opts.AxisLineOpts(is_show=False),   # y轴线不显示
                                              splitline_opts=opts.SplitLineOpts(is_show=True),   # y轴网格线显示
                                              axislabel_opts=opts.LabelOpts(formatter="{value} 元")),# y轴刻度文字
                     xaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
                                              is_scale=False,
                                              boundary_gap=False))
    )

for item in lines:
    line_data = df[item['name_of_line']].values.tolist()
    line.add_yaxis(item['name_of_line'],
                   line_data,
                   is_connect_nones=True,
                   #symbol="triangle" 标识的样式  三角形
                   symbol_size=10, # 标识的大小
                   is_smooth=True, # 线条样式  , 是否设置成圆滑曲线
                   linestyle_opts=opts.LineStyleOpts(width=3,color=item['color']),  # 线条颜色和宽度
                   label_opts=opts.LabelOpts(is_show=True,position='top',color=item['color']),# 文字标签的位置和颜色
                   itemstyle_opts=opts.ItemStyleOpts(border_width=3, border_color=item['color'], color=item['color']),  # 标识的颜色和宽度
                   )

# 在pycharm中,保存html
# line.render("%s趋势分析.html" % security)
# 在notebook中,直接显示出来
line.render_notebook()


上述代码,可得绘图如下:

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

这个图,真是好看啊,4%是妥妥的~即使是在如此行情的2024年,也是没有跌破啊。

4.1. 各标的走势对比

下面就是分别调整2个参数:

security = ‘510300’
start_date_str = ‘2016-02-25’

其实还有下面的参数可以配:number_of_percent,这里只是3条线,4%,6%,8%,也可以再加10%的等等。

lines = [
    {'start_date_str': start_date_str, 'number_of_percent': 0.04, 'name_of_line': '预测值4%', 'color': '#cc0099'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.06, 'name_of_line': '预测值6%', 'color': '#16c79a'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.08, 'name_of_line':  '预测值8%', 'color': '#00d7ff'}
]

下面主要就是按照不同的标的,调整起始时间看看画出来的图的效果。也好对这个标的心中有数。

4.1.1. 沪深300

4.1.1.1. 沪深300 2016-02-25

标注:沪深300 510300

直线起始时间:2016-02-25

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

上图,是需要把完整代码前面2行改一下就行:

security = '510300'
start_date_str = '2016-02-25'
4.1.1.2. 沪深300 2014-05-23

标注:沪深300 510300

直线起始时间:2014-05-23

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

上图,是需要把完整代码前面2行改一下就行:

security = '510300'
start_date_str = '2014-05-23'

4.1.2. 中证500

4.1.2.1. 中证500 2016-02-25

标注:中证500 510500

直线起始时间:2016-02-25

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

上图,是需要把完整代码前面2行改一下就行:

security = '510500'
start_date_str = '2016-02-25'
4.1.2.2. 中证500 2014-05-23

标注:中证500 510500

直线起始时间:2014-05-23

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

上图,是需要把完整代码前面2行改一下就行:

security = '510500'
start_date_str = '2014-05-23'

4.1.3. 创业板ETF 159915 2012-12-11

2.1.2 一个关于y=ax+b的故事,投资,投资,年化收益率,最佳拟合,标准化

由于创业板波动太大,那我们从远一点2012年开始画图,而且,8%貌似都不能很好的拟合19年和23年的低点,我们加了一条10%的红线!

security = '159915'
start_date_str = '2012-12-11'
lines = [
    {'start_date_str': start_date_str, 'number_of_percent': 0.04, 'name_of_line': '预测值4%', 'color': '#cc0099'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.06, 'name_of_line': '预测值6%', 'color': '#16c79a'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.08, 'name_of_line':  '预测值8%', 'color': '#00d7ff'},
    {'start_date_str': start_date_str, 'number_of_percent': 0.1, 'name_of_line':  '预测值10%', 'color': '#ff0000'}
]

这意味着:如果是从12年12月开始,即使是拿着不动,到现在也能拿到10%的复合年化收益率,还是非常非常可观的。

5. 总结

如果用最佳拟合直线,那么沪深300的年化是8.5%,中证500的年化是3.9%

如果是按照收盘价的首尾点来计算,那么沪深300的年化是4.72%,中证500的年化是5.55%

为什么最佳拟合直线和首尾点计算的年化差异这么大?还是因为今天2024年1月15日,收盘价跟最佳拟合直线的差距很大,自然会有很大的偏差,如果哪天能所谓的“价值回归”或是就应该是这个价,那2者会慢慢合理起来。

波动很大,但是最终的结果,还是能达到5%左右的年化收益率。文章来源地址https://www.toymoban.com/news/detail-798350.html

到了这里,关于2.1.2 一个关于y=ax+b的故事的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2.1.2 一个关于y=ax+b的故事

    跳转到根目录:知行合一:投资篇 已完成: 1、投资技术   1.1.1 投资-编程基础-numpy   1.1.2 投资-编程基础-pandas   1.2 金融数据处理   1.3 金融数据可视化 2、投资方法论   2.1.1 预期年化收益率   2.1.2 一个关于y=ax+b的故事 3、投资实证   [3.1 2023这一年] 被鸽 当看

    2024年01月17日
    浏览(51)
  • 普塔道ptahdao:兼备“稳定”与“高收益”,成为投资首选

    普塔道ptahdao是全球首个DAO治理平台,致力于开拓web3.0技术全新局面,构建高新治理形态,全球首个DAO信托资产配置投顾平台。近日,普塔道ptahdao凭借其兼备“稳定”与“高收益”的特点,成为投资者的首选,引发了市场的广泛关注和热议。 普塔道ptahdao的核心优势在于其背靠

    2024年02月12日
    浏览(48)
  • 这是关于“树先生“的故事

    树的定义:树是指由N(N=0)个有限结点组成的具有层次性关系的集合,是一种简单的非线性结构。当N=0时,称为空树。 前序遍历 中序遍历 后序遍历 对于前中后序遍历使用的是根节点的位置决定前中序。 层序遍历 对于层序来说就是一层一层的进行遍历,由上面一层的根节遍

    2024年02月05日
    浏览(51)
  • 关于React hooks的一些故事

    难以复用组件间状态逻辑 :组件状态逻辑的复用,需要 props render 和 高阶组件 等解决方案,但是此类解决方案的抽象封装将会导致层级冗余,形成“嵌套地狱” 什么是状态逻辑? 在React中,我们可以将\\\"状态逻辑\\\"理解为与组件的数据、状态和行为相关的代码。这些代码用于

    2024年02月07日
    浏览(35)
  • 关于投资,房地产,AI

    各位朋友,新年好! 过个年,世界发生了很多大事! 先是 证监会 ,证监会年前换帅,吴清接棒,吴清何许人也?江湖人称“券商屠夫”,成功处置了2008年的券商风险,严厉打击“老鼠仓”。 过年假期,我们还在欢天喜地时候,证监会的工作人员却在加班加点。 2024年2月

    2024年02月21日
    浏览(53)
  • 关于从安全角度看机器学习:真实的故事

      今天,我们从安全的角度对机器学习进行考察,并回顾一些最有趣的事件。 机器学习如何应用于信息安全 一方面,机器学习帮助信息安全产品检测攻击,并帮助专家识别数据中新的依赖关系。另一方面,ML正在成为网络犯罪分子的工具之一。第三,机器学习本身也会有漏洞

    2024年02月11日
    浏览(42)
  • 一个床垫的故事

    这是学习笔记的第 2460篇文章 这是一个床垫的真实故事,想起来还是蛮感慨的,真是太魔幻了。  起因是我哥搬家,有一个很新的品牌床垫,因为新房子那边买家具已经送了一个床垫了,所以就多出来一个床垫,他打算把这个蛮好的床垫给我。 听起来是一件挺简单的事情,

    2024年02月09日
    浏览(75)
  • Python来写一个童话故事

    主题:冒险, 风格:惊险, 人物:男孩, 地点:海底。 def move_left(): # 获取男孩当前的x坐标,并减去男孩的速度,得到新的x坐标 x = boy.xcor() - BOY_SPEED # 如果新的x坐标小于屏幕左边界加上男孩的大小的一半,则将新的x坐标设置为屏幕左边界加上男孩的大小的一半,防止男孩

    2024年02月06日
    浏览(36)
  • 一个专科生和云计算的故事

    老师给我们往年的比赛真题让我们慢慢啃不断学习,然后就是自己背题按照题上的步骤一步一步的在linux上输入命令去搭建IAAS平台、起初感觉很帅,输入一个命令电脑上一直不断的出现代码!慢慢的记住了搭建IAAS、SAAS、bigdate平台的流程,但是并不知道为什么要输这些命令,

    2024年04月10日
    浏览(39)
  • 【Linux】一个小故事让你秒懂shell外壳程序

      目录 🌈前言 🌞shell外壳程序 🐣用户是直接访问操作系统吗? 🐣什么是Shell外壳程序 🐣一个小故事加深你对Shell外壳程序的理解 🐣如何查看自己的外壳程序 🌄总结   🌈 前言 今天我将为大家详细讲解shell外壳程序,并且通过一个小故事来帮助大家理解和加深印象,故

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包