深度学习笔记(二)——Tensorflow环境的安装

这篇具有很好参考价值的文章主要介绍了深度学习笔记(二)——Tensorflow环境的安装。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本篇文章只做基本的流程概述,不阐述具体每个软件的详细安装流程,具体的流程网上教程已经非常丰富。主要是给出完整的安装流程,以供参考

环境很重要

一个好的算法环境往往能够帮助开发者事半功倍,入门学习的时候往往搭建好环境就已经成功了一半。
在机器学习或者深度学习的设计研究中,人们往往会使用已经有的网络框架来构建网络模型和设计各种识别分类或者生成算法。
主要可以给我们学习和使用的框架这里推荐两个:Tensorflow或者Pytorch。
当然也有很多其它优秀的框架等待我们学习和使用,例如国内有百度的PaddlePaddle飞桨、Caffe等。后面的内容我们首先在Tensorflow或者Pytorch上开展,毕竟这是大家使用最多的两个框架。
下面是一些主流的网络框架及其标志
深度学习笔记(二)——Tensorflow环境的安装,深度学习,深度学习,笔记,tensorflow

1、安装Python

安装python想必各位都已经看过网上各种各样的教程了。但是这里还是多说一句,希望大家无论在windows平台还是linux平台上,都安装conda等环境管理工具使用。学习的过程中往往需要复现他人的大量算法,学习别人撰写代码的经验,所以会经常安装不同类型的环境,使用conda能够极大的便捷我们在环境上的使用。关于python的安装版本,在研究19年以前的算法上推荐使用python3.6,近几年的算法则3.7 3.8均可。安装conda时注意系统环境变量的设置。
常用的conda命令和pip安装命令可以参考:

conda常用命令

2、需要一个好用的IDE或者编辑器

这里推荐使用Pycharm或者VSCode,提示一下,Pycharm的专业版对学生可以申请免费使用, 用学信网的学历认证进行申请,每次更新一次。当然,也完全可以使用免费的VSCode

3、对于GPU设备,安装CUDA工具包

如果你的设备有英伟达的CPU设备,那么你可以进一步安装CUDA和cuDNN,CUDA是利用GPU中CUDA进行计算的关键软件和驱动,cuDNN则专门针对深度学习提供了一些开发接口,二者是利用GPU进行深度学习的关键,同时CUDA和cudnn的版本之间存在严格对应关系。
深度学习笔记(二)——Tensorflow环境的安装,深度学习,深度学习,笔记,tensorflow
上图是英伟达官网的版本要求,特点要关注表格第一列和第二列。下载对应版本的CUDA和cudnn安装。
考虑实际,往往会安装多个CUDA版本来适应不同版本的深度学习框架,注意安装时在系统环境变量中设置清楚。
对windows用户,安装CUDA前最好安装Visual Studio并安装C++工作负载。新卡安装2019,旧卡安装2017(当然VS得选项并非必要条件,如果以后想深入学习NN算法,那最好先行安装一个。后面的内容默认安装了19,或17的任何一个版本,来对windows提供完整的C++支持
深度学习笔记(二)——Tensorflow环境的安装,深度学习,深度学习,笔记,tensorflow
值得注意:在最新的RTX30系列显卡以及之后的显卡中不在支持CUDA11以前的版本。意味着CUDA10.0和10.1,10.2三个大版本将无法直接在新显卡使用,Tensorflow2.4.0以及之前版本,Pytorch1.7.1及以前的版本无法正常使用,如果有需要可以在英伟达官网下载适配新卡的专用包安装使用。
安装cuda前请先明确是否有特定的版本限制,深度学习框架一搬均有特定版本cuda限制。

4、给python安装相关包

在正确安装conda后,这里我们举例构建一个初学Tensorflow的基础环境
第一步,创建虚拟环境并打开虚拟环境:

# bash / Shell
conda create -n tensorflow260 python=3.7

conda activate tensorflow260

第二步,安装相关工具包,以下未指定版本,pip将安装最新版本,只适用学习,复现程序时需要安装指定版本的包,这步在环境配置中及其重要,正确安装完整的,对应版本的包是后续研究的基础。

# bash / Shell
# 跟新pip
pip install --upgrade pip

# 检查当前环境中包情况,并无任何ERROR和WORNING
pip list

# 直接安装指定版本tensorflow:pip install tensorflow==x.x.x 
pip install tensorflow
# pip会自动安装需要的各种依赖包,下载过慢的话可以选择切换下载服务器(下例为中科大镜像):
pip install tensorflow -i https://pypi.mirrors.ustc.edu.cn/simple/

# 安装TensorBord
pip install tensorbord

#	安装绘图工具
pip install matplotlib

# 安装机器学习常用库
pip install scikit-learn

5、TensorFlow旧版本对CUDA的支持情况

在安装旧版本TensorFlow前需要先安装对应的CUDA和cudnn。
深度学习笔记(二)——Tensorflow环境的安装,深度学习,深度学习,笔记,tensorflow

6、检查环境

检查cuda:

# 查看cuda版本
nvcc -V

检查cudnn,在cuda安装目录中执行测试程序,例如在路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite下执行bandwidthTest.exe和deviceQuery.exe,不报错则说明安装成功。

检查tensorflow对gpu支持

# 激活虚拟环境后:
python

import tensorflow as tf
# tensorflow1,如果返回True则说明安装成功
print(tf.test.is_gpu_available())
# tensorflow2,如果列表不为空说明成功
print(tf.config.list_physical_devices('GPU'))

应用实例

考虑tensorflow目前具有众多版本,所以后面相关的tf博客除非特殊说明,均使用以下软件环境:

cuda = 11.8	# CUDA也可以使用11.2版本
python=3.7
numpy==1.19.5
matplotlib== 3.5.3
notebook==6.4.12
scikit-learn==1.2.0
tensorflow==2.6.0
keras==2.6.0

同时在安装好CUDA后记得检查环境变量,系统PATH中应该包含:
深度学习笔记(二)——Tensorflow环境的安装,深度学习,深度学习,笔记,tensorflow文章来源地址https://www.toymoban.com/news/detail-798383.html

到了这里,关于深度学习笔记(二)——Tensorflow环境的安装的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Tensorflow入门(1)——深度学习框架Tesnsflow入门 & 环境配置 & 认识Tensorflow

    1.anaconda以及Tensorflow的安装: https://blog.csdn.net/qq_33505204/article/details/81584257 2.Anaconda详细安装及使用教程: https://blog.csdn.net/ITLearnHall/article/details/81708148 3.windows平台下,TensorFlow的安装、卸载以及遇到的各种错误: https://blog.csdn.net/qq_27245699/article/details/81050035 CONDA环境安装: co

    2024年02月12日
    浏览(47)
  • 全网最新最全的基于Tensorflow和PyTorch深度学习环境安装教程: Tensorflow 2.10.1 加 CUDA 11.8 加 CUDNN8.8.1加PyTorch2.0.0

    本文编写日期是:2023年4月. Python开发环境是Anaconda 3.10版本,具体Anaconda的安装这里就不赘述了,基础来的。建议先完整看完本文再试,特别是最后安装过程经验分享,可以抑制安装过程中一些奇怪的念头,减少走弯路。 目录 1. NVidia驱动安装  2. 安装CUDA Toolkit 3. 安装Tensorfl

    2024年02月08日
    浏览(55)
  • 【深度学习笔记】TensorFlow 基础

    在 TensorFlow 2.0 及之后的版本中,默认采用 Eager Execution 的方式,不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码,无需构建计算图,可以立即进行数学计算,简化了代码调试的过程。本文主要介绍 TensorFlow 的基本用法,通过构建一个简单损失函数

    2024年02月13日
    浏览(39)
  • windows10系统PYthon深度学习环境安装(Anaconda3、PYthon3.10、CUDA11.6、CUDDN10、pytorch、tensorflow,Pycharm)

    一、 總體说明 1、說明:總體採用https://blog.csdn.net/zhizhuxy999/article/details/90442600方法,部分步驟由於版本變化,進行了調整。 2、基本概念 编程语言/编译器:Python。Python的特点是“用最少的代码干最多的事”。Python 2即在2020年停止更新,所以现在学习Python 3是最好的选择。 P

    2023年04月18日
    浏览(85)
  • 从零开始配置深度学习环境:CUDA+Anaconda+Pytorch+TensorFlow

    本文适用于电脑有GPU(显卡)的同学,没有的话直接安装cpu版是简单的。CUDA是系统调用GPU所必须的,所以教程从安装CUDA开始。 可以配合视频教程食用:https://www.bilibili.com/video/BV12m4y1m7pq/?vd_source=06e4e8652ea90d79dadb7a59ff8acd36 CUDA是加速深度学习计算的工具,诞生于NVIDIA公司,是一

    2023年04月14日
    浏览(66)
  • vscode连接远程服务器 + Tensorflow2环境配置 + 深度学习训练

    参考:vscode连接远程服务器(傻瓜式教学) 配置服务器pytorch/TensorFlow环境+远程连接vscode 在远程服务器安装anoconda并创建tensorflow-gpu环境并运行jupyter 【vscode连接远程服务器】 step 1:测试服务器连接 win+R 进入 cmd,在命令行输入以下命令,并根据提示输入密码 step 2:安装 ssh 插

    2024年02月08日
    浏览(64)
  • Pytorch或Tensorflow 深度学习库安装 (简易版)

    如果只用pytorch, 只需在虚拟环境安装cuda 和 cudnn即可;(只需1-2步即可) 如果使用 tensorflow,一般虚拟环境不支持,2.10一下亲测不行;(需要第3步) 显示True或者GPU可用集合,则成功; 如果显示False,参考下面 3; cuda安装 添加环境变量 测试cuda PASS 则表示通过 下载library,

    2024年04月23日
    浏览(34)
  • 黑马程序员3天带你玩转Python深度学习TensorFlow框架学习笔记

    这是黑马程序员3天带你玩转Python深度学习TensorFlow框架学习笔记 视频链接: 黑马程序员3天带你玩转Python深度学习TensorFlow框架 学习目标:知道深度学习与机器学习的区别 区别:深度学习没有特征提取 特征方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专

    2024年02月01日
    浏览(258)
  • 深度学习框架安装与配置指南:PyTorch和TensorFlow详细教程

    如何安装和配置深度学习框架PyTorch和TensorFlow 为什么选择PyTorch和TensorFlow? PyTorch TensorFlow 安装PyTorch 步骤1:安装Python 步骤2:使用pip安装PyTorch 安装TensorFlow 步骤1:安装Python 步骤2:使用pip安装TensorFlow 验证安装 配置深度学习环境 步骤1:选择合适的IDE 步骤2:安装必要的库 步

    2024年02月10日
    浏览(45)
  • 【深度学习】TensorFlow实现线性回归,代码演示。全md文档笔记(代码文档已分享)

    本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经

    2024年02月21日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包