告别枯燥理论,一文看懂贝叶斯概率

这篇具有很好参考价值的文章主要介绍了告别枯燥理论,一文看懂贝叶斯概率。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

贝叶斯公式由英国数学家贝叶斯发展而来,在统计学和概率论中有着广泛的应用。
与传统的先验概率不同,它提出的后验概率方式,会根据不断出现的新证据来更新概率估计,
从而使得估计的准确性能够不断改善。

本文尝试通过一个简单的预测天气的示例来讲解后验概率是怎么回事,以及如何根据它推导出贝叶斯公式的。

1. 从预测天气开始

这里为了简化,我们只考虑两种天气情况,晴天雨天
在没有其他条件的情况下,我们预测明天的天气,得到的是 50%概率是晴天50%概率是雨天

这个概率也可称为先验概率,就像扔硬币一样,
没有其他条件的情况下,我们根据经验,可得出硬币落地后正反面的概率各为 50%
上面的天气预测结果,绘制成概率图如下(晴天雨天的概率各占50%):
告别枯燥理论,一文看懂贝叶斯概率

根据上面的情况,可以整理成简单的公式如下:
\(P(天气=晴天)=0.5\)
\(P(天气=雨天)=0.5\)
其中,\(P(...)\)表示某个事件的概率。

2. 引入新变量

接着上面的示例讨论,为了更精确的预测明天的天气,我们引入新的变量。
假设这个新的变量霞光,也就是当天是否有朝霞晚霞
这里为了简化,假设朝霞晚霞必然出现,且不会同一天出现。

根据谚语“朝霞不出门,晚霞行千里”,
我们假定明天晴天的话,今天晚霞的概率为80%朝霞的概率为20%
明天雨天的话,今天晚霞的概率为10%朝霞的概率为90%

整理成概率的表格更直观一些:

明天天气 朝霞 晚霞
晴天 0.2 0.8
雨天 0.9 0.1

这个表格是按行来看的,表示不同天气情况下,朝霞晚霞出现的概率。
用公式来表示的话:
\(P(霞光=朝霞 | 天气=晴天) = 0.2\) 这个公式表示明天晴天的话,今天朝霞的概率 20%
也就是 \(P(A|B)\) 表示B发生时,A发生的概率。

同理可得出:
\(\begin{cases} \quad P(霞光=晚霞 | 天气=晴天) = 0.8 \\ \quad P(霞光=朝霞 | 天气=雨天) = 0.9 \\ \quad P(霞光=晚霞 | 天气=雨天) = 0.1 \end{cases}\)

3. 联合概率

现在,我们有2个变量了,霞光天气
根据这两个变量,可以计算它们同时发生的概率,也就是联合概率
联合概率的公式用 \(P(A, B)\)来表示,事件A和事件B之间用逗号。

根据上一节的表格,绘制联合概率分布图如下:
告别枯燥理论,一文看懂贝叶斯概率

由上文第一节的假设可知:\(P(晴天)=0.5\)\(P(雨天)=0.5\)
由上文第二节的内容可知:
\(P(晚霞|晴天)=0.8\)\(P(朝霞|晴天)=0.2\)
\(P(晚霞|雨天)=0.9\)\(P(朝霞|雨天)=0.1\)

所以得出上图中各个部分联合概率的结果如下:
\(\begin{cases} \quad P(霞光=朝霞,天气=晴天) = P(朝霞|晴天)\times P(晴天) = 0.1 \\ \quad P(霞光=晚霞,天气=晴天) = P(晚霞|晴天)\times P(晴天) = 0.4 \\ \quad P(霞光=朝霞,天气=雨天) = P(朝霞|雨天)\times P(雨天) = 0.45 \\ \quad P(霞光=晚霞,天气=雨天) = P(晚霞|雨天)\times P(雨天) = 0.05 \end{cases}\)
从公式可以算出,符合谚语“朝霞不出门,晚霞行千里”的概率高达85%,即:
\(P(霞光=朝霞,天气=雨天) + P(霞光=晚霞,天气=晴天) = 0.45+0.4=0.85\)

4. 推导贝叶斯

接下来,就可以开始推导贝叶斯公式了,
为了简化公式,我们假设上面的变量霞光A天气B
\(A\)表示朝霞晚霞中的一种;\(B\)表示晴天雨天中的一种。

那么,上一节的4个联合概率公式可简化为:\(P(A, B) = P(A|B) \times P(B) \quad (1)\)
或者简化为:\(P(B,A) = P(B|A) \times P(A) \quad (2)\)

\(P(A, B)\)\(P(B,A)\)都是表示同样的含义,也就是\(A\)\(B\)同时发生的概率。
所以上式\((1)\)\((2)\)是相等的,从而得出:
\(P(A|B) \times P(B) = P(B|A) \times P(A)\)
即:\(P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}\)\(P(B|A)=\frac{P(A|B) \times P(B)}{P(A)}\)
这就是贝叶斯公式

5. 后验概率

最后,我们来看看什么是后验概率,以及贝叶斯公式为什么是后验概率

提到后验概率,不得不提先验概率
所谓先验概率,就是事件发生时,我们已经能够判断出事件发生的概率,
判断的依据就是先前的经验,所以被成为先验概率
比如,扔硬币,掷筛子,买彩票等等。
扔硬币之前,我们就已经可以判断正反面的概率各为 50%
掷筛子之前,可以判断掷出任意点数的概率均为33.33%
买彩票之前,也可以算出连续猜对几个数字的概率。

这些都是先验概率,平时生活中,我们做各种决策时,常常都在不知不觉中使用先验概率来判断。
然而,对于复杂的情形,先验概率的准确性大大降低,就以本文中的天气预测为例,
天气预测涉及很多因素,不仅仅是上文的朝霞晚霞,还有不同的经纬度,气温,湿度,风向等等都对明天的天气有影响。

如果用先验概率的做法,我们会根据历史数据来算出各个因素(包括朝霞晚霞,经纬度,气温,湿度,风向等等)对明天天气的影响,然后生成一个分类模型。
然后通过这个分类模型预测明天的天气,就是先验概率

不过,天气不像扔硬币,掷筛子,买彩票那样一成不变,随着时间的推移,我们的环境在不断变化(包含人为的和非人为的)。
所以根据历史数据计算出的预测模型随着时间推移会越来越不准确。

这时就需要通过后验概率来更新各个因素(包括朝霞晚霞,经纬度,气温,湿度,风向等等)对明天天气的影响,
然后更新我们的分类模型,更新的方式就是贝叶斯公式,

假设各个影响天气预测的因素分别为\(A_1, A_2, A_3...A_n\)\(B\)表示实际天气情况。
拓展上一节中的贝叶斯公式,可得:\(P(A_1,A_2...A_n|B) = \frac{P(B|A_1,A_2...A_n) \times P(A_1,A_2...A_n)}{P(B)}\)
根据这个公式,可以反推出\(P(A_1,A_2...A_n|B)\),即在已知天气\(B\)的情况下,各个影响天气的因素出现的概率。
这个概率就是用来更新天气预测模型用的。

总的来说,后验概率可以看做先验概率的一个补充,它以先验概率为基础,根据不断出现的新证据或新数据,对先验概率的进行更新。
这个过程和机器学习的过程非常类似,所以贝叶斯概率也是机器学习中分类模型常用的算法。文章来源地址https://www.toymoban.com/news/detail-798485.html

到了这里,关于告别枯燥理论,一文看懂贝叶斯概率的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率 随机变量 条件概率 贝叶斯定理

    随机变量x是一个变化的量,它的变化是由于偶然/随机性引起的。可以将随机变量看成一个函数,它由实验结果赋值。例如:在抛硬币的实验中把正面朝上定义为x1=0,反面朝上为x2=1。 一般用小写字母表示随机变量,如 x text x x 。一旦试验完成,它的取值就用斜体的 x x x 表示

    2024年02月10日
    浏览(46)
  • 期末sql_server复习枯燥?乏味?一文带你轻松击破sql壁垒!

    🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集! 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📆 未来很长,值得我们全力奔赴更美好的生活✨ ------------------❤️分割线❤️------------------------- —————————

    2024年02月07日
    浏览(30)
  • 机器学习——先验概率、后验概率、全概率公式、贝叶斯公式

    1、定义 先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为\\\"由因求果\\\"问题中的\\\"因\\\"出现的概率。——百度百科 2、直观理解 这件事还没有发生,根据以往的经验和数据推断出这件事会发生的概率。 3、例子 以扔硬币为例,在扔之前就

    2023年04月08日
    浏览(48)
  • 1-条件概率,联合概率,边缘概率三者关系以及贝叶斯公式

    过去一直没有养成记笔记的习惯,今天开始对所学的知识进行一个记录,以便日后翻阅查看。若有不对之处,欢迎各位网友指出 表示两个事件共同发生的概率。举例:A与B的联合概率表示为 P(AB) 或者P(A,B),或者P(A∩B)。 条件概率是指事件A在事件B发生的条件下发生的概率。条件

    2024年02月05日
    浏览(46)
  • 概率论--随机事件与概率--贝叶斯公式--随机变量

    目录 随机事件与概率 概念 为什么要学习概率论 随机事件与随机事件概率 随机事件 随机事件概率 贝叶斯公式  概念 条件概率 概率乘法公式 贝叶斯公式  举个栗子 随机变量   随机变量的定义 随机变量的分类 离散型随机变量 连续型随机变量 概念 随机事件是指在一次试验

    2024年02月11日
    浏览(45)
  • 条件概率、贝叶斯公式理解

    1、 条件概率 条件概率是指事件A在事件B发生的条件下发生的概率, 记作:P(A|B)。如下图所示:整个样本空间为Ω,事件A和事件B包含在Ω中。事件A和事件B同时发生的情况,即A、B交集记作AB。事件A的概率记作:P(A)=A/Ω,事件B的概率记作P(B)=B/Ω。AB交集部分的概率记作:P(A

    2024年02月11日
    浏览(58)
  • 15、条件概率、全概率公式、贝叶斯公式、马尔科夫链

    定义:设A、B是两个事件,且,P(A) 0 则称 为事件A发生的条件下事件B的条件概率 对这个式子进行变形,即可得到概率的乘法公式: P(A) 0 时,则 P(B) 0 时,则 乍一看,这个式子不就是把除法形式写成了乘法形式嘛,不然不然,这个区别是本质的,分母不为0很关键,而且看法也

    2024年02月13日
    浏览(44)
  • 全概率公式和贝叶斯公式

    一、完备事件组 设E是随机试验,Ω是相应的样本空间,A1,A2,...,An为Ω的一个事件组, 若两两事件互斥且所有事件的并集为全集,则称A1A2...An为样本空间的一个完备事件组。 二、条件概率 设A,B是两个事件,且P(B)0,则在事件B发生的条件下,事件A发生的条件概率: P(A|B)=P(

    2024年02月12日
    浏览(38)
  • 【概率论】贝叶斯公式的作业

    两台车床加工同样的零件,第一台出现不合格品的概率是 0.03,第二台出现不合格品的概率是 0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.如果取出的零件是不合格品,求它是由第二台车床加工的概率_____; (结果小数点后保留1位) 【正

    2024年02月11日
    浏览(39)
  • 概率图模型中的贝叶斯网络

    概率图的框架 由上图可知,PGM(概率图)主要分为3个部分: 表示(Representation):是将实际的问题,简化成概率图的形式表达出来。 推断(Inference):通过上面生成的概率图模型,推断出我们在已知条件下,想要询问的变量概率。 学习(Learning):用真实世界数据进一步拟合我们的模

    2023年04月10日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包