【数据结构】树的介绍

这篇具有很好参考价值的文章主要介绍了【数据结构】树的介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

🚩本章给大家介绍一下树。树的难度相对于前面的数据结构来说,又高了一个台阶,所以我们要先从最基础的开始,也就是本章的一些知识点。
🚩树又分为很多种树,如 二叉树,红黑树,AVL树,B树 等等,这些的难度都相对较大,所以大家对本章树的一些概念以及一些基本性质的理解必不可少。
🚩本章除了对树的介绍,还有基础的二叉树的相关介绍,目的是为了大家能够更好的理解树。


树的概念及结构

树的概念

  • 树是一种非线性的数据结构,它是由n(n >= 0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

    1. 有一个特殊的结点,称为根结点,根节点没有前驱结点。
    2. 除根节点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1 <= i <= m) 又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。

【数据结构】树的介绍,数据结构与算法,数据结构,树

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

例如:

【数据结构】树的介绍,数据结构与算法,数据结构,树

  • 根据树的结构,有以下概念:

【数据结构】树的介绍,数据结构与算法,数据结构,树

1. 节点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
2. 叶节点或终端节点: 度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点。
3. 非终端节点或分支节点: 度不为0的节点; 如上图:D、E、F、G...等节点为分支节点。
4. 双亲节点或父节点: 若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:AB的父节点。
5. 孩子节点或子节点: 一个节点含有的子树的根节点称为该节点的子节点; 如上图:BA的孩子节点。
6. 兄弟节点: 具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点。
7. 树的度: 一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
8. 节点的层次: 从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
9. 树的高度或深度: 树中节点的最大层次; 如上图:树的高度为4
10. 堂兄弟节点: 双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点。
11. 节点的祖先: 从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先。
12. 子孙: 以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙。
13. 森林:m(m>0)棵互不相交的树的集合称为森林

树的表示

树的结构相对线性表就比较复杂了,要存储表示起来也就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系。实际中树有很多种表示方式如: 双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的 孩子兄弟表示法

所谓孩子兄弟表示法,指的是将整棵树用二叉链表存储起来,具体实现方案是:树的左指针指向自己的第一个孩子,右指针指向与自己相邻的兄弟。

该结构的最大优点是:它和二叉树的二叉链表表示完全一样。可利用二叉树的算法来实现对树的操作

图示:

【数据结构】树的介绍,数据结构与算法,数据结构,树

【数据结构】树的介绍,数据结构与算法,数据结构,树

其定义的结构如下:

typedef int DataType;
struct Node
{
	 struct Node* _firstChild1; // 第一个孩子结点
	 struct Node* _pNextBrother; // 指向其下一个兄弟结点
	 DataType _data; // 结点中的数据域
};

树在实际中的运用

  • 树在实际中运用的最好的一个例子,就是系统的文件目录结构。

Linux树状目录结构:

【数据结构】树的介绍,数据结构与算法,数据结构,树

  • 实际上windows的目录结构也是一棵树,我们点击一个文件就会出现若干子文件等等,点击子文件又会出现若干个子文件的子文件等等,这也是一个明显的数的储存结构。

二叉树的概念及结构

二叉树的概念

  • 一棵二叉树是结点的一个有限集合,该集合:要么为空,要么由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

【数据结构】树的介绍,数据结构与算法,数据结构,树

从上图可以看出:

  1. 二叉树不存在度大于2的结点;
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

【数据结构】树的介绍,数据结构与算法,数据结构,树

现实中的二叉树

【数据结构】树的介绍,数据结构与算法,数据结构,树

【数据结构】树的介绍,数据结构与算法,数据结构,树

  • 要是能在现实种中看到这种树,那不得好好拜一拜 😃

特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 ^ K - 1,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K
    的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

【数据结构】树的介绍,数据结构与算法,数据结构,树

二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2 ^ (i - 1)个结点。
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2 ^ h - 1
  • 对任何一棵二叉树, 如果度为0的叶结点个数为 a, 度为2的分支结点个数为 b,则有 a = b + 1
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度 h= log(n + 1)
  • 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对
    于序号为i的结点有:
    1. i > 0i位置节点的双亲序号:(i - 1) / 2i = 0i 为根节点编号,无双亲节点;
    2. 2i + 1 < n,左孩子序号:2i + 12i + 1 >= n否则无左孩子;
    3. 2i + 2 < n,右孩子序号:2i + 22i + 2 >= n否则无右孩子。

二叉树的储存结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

顺序存储

  • 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

【数据结构】树的介绍,数据结构与算法,数据结构,树

链式存储

  • 二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面的高阶数据结构如红黑树等会用到三叉链。

【数据结构】树的介绍,数据结构与算法,数据结构,树

【数据结构】树的介绍,数据结构与算法,数据结构,树

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
	 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
	 struct BinTreeNode* _pRight; // 指向当前节点右孩子
	 BTDataType _data; // 当前节点值域
}

// 三叉链
struct BinaryTreeNode
{
	 struct BinTreeNode* _pParent; // 指向当前节点的双亲
	 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
	 struct BinTreeNode* _pRight; // 指向当前节点右孩子
	 BTDataType _data; // 当前节点值域
}

写在最后

💝关于树的介绍就这么多,想深入了解大家可以查阅一些文献。后续我将会以此篇章为基础点,依次给大家带来堆与二叉树的实现。
❤️‍🔥后续将会持续输出有关数据结构与算法的文章,你们的支持就是我写作的最大动力!

感谢阅读本小白的博客,错误的地方请严厉指出噢~文章来源地址https://www.toymoban.com/news/detail-798665.html

到了这里,关于【数据结构】树的介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】二叉树的遍历递归算法详解

    我们来写一个函数 BuyNode(x)函数 用于创建二叉树结点。 用动态开辟函数 malloc 函数进行动态开辟,并强制转换为 BTNode 型,用变量 node 来去管理开辟的空间。 我们初始化结点,其 val 即为传入的参数x,左右指针 left 和 right 都设为NULL。 我们在主函数中创建上面这样一颗二叉树

    2024年01月20日
    浏览(46)
  • 【数据结构和算法15】二叉树的实现

    二叉树是这么一种树状结构:每个节点最多有两个孩子,左孩子和右孩子 重要的二叉树结构 完全二叉树(complete binary tree)是一种二叉树结构,除最后一层以外,每一层都必须填满,填充时要遵从先左后右 平衡二叉树(balance binary tree)是一种二叉树结构,其中每个节点的左

    2024年02月16日
    浏览(35)
  • 【数据结构与算法】二叉树的知识讲解

    目录  一,二叉树的结构深入认识  二,二叉树的遍历  三,二叉树的基本运算 3-1,计算二叉树的大小 3-2,统计二叉树叶子结点个数 3-3,计算第k层的节点个数 3-4,查找指定值的结点         二叉树是不可随机访问的,二叉树的结构是通过双亲结点与孩子结点之间的连接进

    2024年02月08日
    浏览(41)
  • 【数据结构与算法】力扣:二叉树的层序遍历

    给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例1: 输入:root = [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 示例 2: 输入:root = [1] 输出:[[1]] 示例 3: 输入:root = [] 输出:[] 来源:力扣(LeetCode) 链接:https://leetcode.cn/p

    2024年02月13日
    浏览(47)
  • 数据结构与算法课程设计---最小生成树的应用

    1.问题 假定有这么一个问题,有11个城市,城市之间有一些天然气管道,铺设天然气管道需要花费不同的金额,现在要你选择其中一些天然气管道,使得所有城市可以互相联通且花费最小。 2.分析 我们把这个问题抽象为一张图,每个城市是一个顶点,城市与城市之间的管道是

    2024年02月08日
    浏览(54)
  • 数据结构“基于哈夫曼树的数据压缩算法”的实验报告

    一个不知名大学生,江湖人称菜狗 original author: jacky Li Email : 3435673055@qq.com Last edited: 2022.11.20 目录 数据结构“基于哈夫曼树的数据压缩算法”的实验报告 一、实验目的 二、实验设备 三、实验内容 1.【问题描述】 2.【输入要求】 3.【输出要求】 4.【实验提示】 四、实验步骤

    2024年02月09日
    浏览(62)
  • 【数据结构】【算法】二叉树、二叉排序树、树的相关操作

    树结构是以分支关系定义的一种层次结构,应用树结构组织起来的数据,逻辑上都具有明显的层次关系。 操作系统中的文件管理系统、网络系统中的域名管理、数据库系统中的索引管理等都使用了树结构来组织和管理数据。 树 Tree 是由n个节点组成的有限集合。在任意一颗非

    2024年02月04日
    浏览(54)
  • 数据结构与算法----详解二叉树的遍历(迭代、递归)

    ❤️ 作者简介 :大家好我是小鱼干儿♛是一个热爱编程、热爱算法的大三学生,蓝桥杯国赛二等奖获得者 🐟 个人主页 :https://blog.csdn.net/qq_52007481 ⭐ 个人社区 :【小鱼干爱编程】 🔥 算法专栏 :算法竞赛进阶指南 💯 刷题网站 :虽然市面上有很多的刷题网站,但是里面

    2024年01月24日
    浏览(54)
  • 【数据结构—二叉树的基础知识介绍和堆的实现(顺序表)】

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 1.树概念及结构 1.1树的概念 1.2 树的相关概念  1.3 树的表示 1.4 树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1概念 2.2 特殊的二叉树: 2.3 二叉树的存储结构

    2024年02月03日
    浏览(44)
  • 【算法与数据结构】236、LeetCode二叉树的最近公共祖先

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 : 根据定义,最近祖先节点需要遍历节点的左右子树,然后才能知道是否为最近祖先节点。 那么这种需求是先遍历左右节点,然后遍历中间节点,属于左右中的后序遍历模式 。因此

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包