基于matlab的语音识别系统

这篇具有很好参考价值的文章主要介绍了基于matlab的语音识别系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

设计任务及要求

1.1设计任务

作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技 术一直受到各国科学界的广泛关注。以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、 旅行社服务系统、订票系统、声控智能玩具、医疗服务、银行服务、股票查询 服务、计算机控制、工业控制、语音通信系统、军事监听、信息检索、应急服务、翻译系统等,几乎深入到社会的每个行业、每个方面,其应用和经济社会 效益前景非常广泛。本次任务设计一个简单的语音识别系。

1.2设计要求

要求:使用matlab软件编写语音识别程序

算法方案选择

2.1设计方案

语音识别属于模式识别范畴,它与人的认知过程一样,其过程分为训练和识别两个阶段。 在训练阶段,语音识别系统对输入的语音信号进行学习。学习结束后,把学习内容组成语音模型库存储起来;在识别阶段,根据当前输入的待识别语音信号,在语音模型库中查找出相应的词义或语义。

语音识别系统与常规模式识别系统一样包括特征提取、模式匹配、模型库等3个基本单元,它的基本结构如图1所示。

图1  语音识别系统基本结构图

本次设计主要是基于HMM模型(隐马尔可夫模型)。这是在20世纪80年代引入语音识别领域的一种语音识别算法。该算法通过对大量语音数据进行数据统计,建立识别词条的统计模型,然后从待识别语音信号中提取特征,与这些模型进行匹配,通过比较匹配分数以获得识别结果。通过大量的语音,就能够获得一个稳健的统计模型,能够适应实际语音中的各种突发情况。并且,HMM算法具有良好的识别性能和抗噪性能。

2.2方案框图

图2  HMM语音识别系统

2.3隐马尔可夫模型

HMM过程是一个双重随机过程:一重用于描述非平稳信号的短时平稳段的统计特征(信号的瞬态特征);另一重随机过程描述了每个短时平稳段如何转变到下一个短时平稳段,即短时统计特征的动态特性(隐含在观察序列中)。人的言语过程本质上也是一个双重随机过程,语音信号本身是一个可观测的时变列。可见,HMM合理地模仿了这一过程,是一种较为理想的语音信号模型。其初始状态概率向量π,状态转移概率矩阵向量A,以及概率输出向量B一起构成了HMM的3个特征参量。HMM 模型通常表示成λ={π,A,B}。

2.4HMM模型的三个基本问题

    

HMM模型的核心问题就是解决以下三个基本问题:

(1)识别问题:在给定的观测序列O和模型λ=(A,B,π)的条件下,如何有效地计算λ产生观测序列O的条件概率 P(O︱λ)最大。常用的算法是前后向算法,它可以使其计算量降低到N2T次运算。

(2)最佳状态链的确定:如何选择一个最佳状态序列Q=q1q2…qT,来解释观察序列O。常用的算法是Viterbi算法。

(3)模型参数优化问题:如何调整模型参数λ=(A,B,π),使P(O︱λ)最大:这是三个问题中最难的一个,因为没有解析法可用来求解最大似然模型,所以只能使用迭代法(如Baum-Welch)或使用最佳梯度法。

第一个问题是评估问题,即已知模型λ=(A,B,π)和一个观测序列O,如何计算由该模型λ产生出该观测序列O的概率,问题1的求解能够选择出与给定的观测序列最匹配的 HMM模型。

第二个问题力图揭露模型中隐藏着的部分,即找出“正确的”状态序列,这是一个典型的估计问题。

第三个问题是使模型参数最优化,即调整模型参数,以使模型能最好地描述一个给定观测序列,最好说明这个观测序列就是最优化模型产生出来的。用于调整模型参数,使之最优化的观测序列称为训练序列。通过训练自适应调整模型参数使之适应于训练序列并最优化,从而得到实际应用中最好的模型。

系统设计

3.1系统框图

                  图3 系统整体结构框图

3.2实施方案

实施方法及具体过程如下:

     (1)端点检测vad(x):采用双门限的算法。输入为采样语音数据x,输出X1, X2是起始端点和结束端点的帧数,并将xi到x2帧的语音数据存sample(k).wave结构数组中。

     (2)MFCC参数算法mfcc(x):输入为采样语音数据x,输出为mfcc参数,取x1—2至x2—2帧的mfcc参数到sample(k).data结构数组中。

     (3)HMM参数初始化inithmm(samples,M):输入为samples和NX*1的数组M,N为状态数,M是每个状态包含的高斯混合个数。

     (4)viterbit识别算法:输入删模型和mfcc参数,回溯最佳状态路径,返回输出概率和状态路径。

     (5)训练过程train(sample,M):对一次迭代函数baum.m实施n次迭代(设 置迭代次数)。输出为训练后的HMM模型参数和总输出概率,将模型参数存入 hmm{i}(hmm为一个cell数组)。 

     (6)识别主程序(recog):对输入待识别的语音用函数vad进行端点检测, 计算出MFCC参数之后,交由识别函数viterbi.m计算得到其对数形式的输出概率,最后显示出识别结果。

四.心得体会

    

通过这次课题,我们在自己的亲身实践中掌握了有关Labview以及matlab设计的思想和方法,对专业知识有了进一步的理解,对语言识别领域有了初步的认识。我们将以前学习的知识在这次设计中进行了充分的应用,通过解决问题得到了很多实践的经验,有助于我们以后的学习.。

通过自己搜集的资料和相关的专业知识,我们完成了理论算法与实际应用的设计,虽然在设计的过程中不断的遇到了很多问题,但是我们克服困难,一步步前进,这不仅丰富了我们的知识,给我们对理论与知识的结合与应用提供了动力,也给我们最后解决问题提供了欣喜的源泉,为我们今后的工作打下了坚实的基础。


参考文献文章来源地址https://www.toymoban.com/news/detail-798666.html

  1. 郭圣权,连晓峰.MATLAB环境下的基于HMM模型的语音识别系统.计算机测量与控制,2004,12(5):470- 475.
  2. 王炳锡,屈丹,彭宜.实用语音识别基础.北京:国防工业出版社,2005:258-266.
  3. 刘么和.语音识别与控制应用技术.北京:科学出版社,2008: 1- 35.
  4. 胡广书.现代信号处理教程.北京:清华大学出版社,2004: 397- 398.
  5. 吴朝晖,杨莹春著.说话人识别模型与方法.北京:清华大学出版社,2009: 21- 76.
  6. 段红梅,汪军,马良河,等.隐马尔可夫模型在语音识别中的应用.工科数学,2002.
  7. 谢锦辉.隐Markov模型(HMM)及其在语音处理中的应用.武汉:华中理工大学出版社,1995.

到了这里,关于基于matlab的语音识别系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Matlab语音识别系统(源代码)

    目录 设计任务及要求………………………………………………1 语音识别的简单介绍 语者识别的概念……………………………………………2   特征参数的提取……………………………………………3   用矢量量化聚类法生成码本………………………………3   的说话人识别

    2024年01月19日
    浏览(51)
  • 【语音识别】说话人识别系统【含Matlab源码 1704期】

    获取代码方式1: 完整代码已上传我的资源:【语音识别】基于matlab说话人识别系统【含Matlab源码 1704期】 点击上面蓝色字体,直接付费下载,即可。 获取代码方式2: 付费专栏Matlab语音处理(初级版) 备注: 点击上面蓝色字体 付费专栏Matlab语音处理(初级版) ,扫描上面

    2024年02月22日
    浏览(43)
  • 基于CNN卷积神经网络的语音信号识别算法matlab仿真

    目录 1.算法仿真效果 2.MATLAB核心程序 3.算法涉及理论知识概要 4.完整MATLAB matlab2022a仿真结果如下:        人工智能的应用中,语音识别在今年来取得显著进步,不管是英文、中文或者其他语种,机器的语音识别准确率在不断上升。其中,语音听写技术的发展最为迅速,目前

    2024年02月04日
    浏览(42)
  • Matlab语音识别系统(源代码)最新版DOC

    目录 设计任务及要求………………………………………………1 语音识别的简单介绍 语者识别的概念……………………………………………2   特征参数的提取……………………………………………3   用矢量量化聚类法生成码本………………………………3   的说话人识别

    2024年01月24日
    浏览(58)
  • 【语音识别】基于主成分分析PCA结合最近邻KNN实现声音自动分类附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年04月27日
    浏览(70)
  • 基于Python的语音识别系统

    基于Python的语音识别系统的设计与实现 摘 要 随着互联网的发展,语音文件成为了人们接触得越来越多文件。如何高效的从一段录音中提取出关键信息,提取出其中人们感兴趣的内容,直观的呈现给人门。本文以DFSMN作为声学模型,引入TensorFlowr模型,将语音识别转化为翻译任

    2024年02月10日
    浏览(38)
  • 基于Pytorch的语音情感识别系统

    大家好,我是阿光。 本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环境:python3.7 编译器:PyCharm PyTorch版本:

    2024年02月06日
    浏览(49)
  • 基于树莓派构建深度学习语音识别系统

    +v hezkz17进数字音频系统研究开发交流答疑裙   1 Linux 音频框架如何做语音识别系统?   要在Linux上构建一个语音识别系统,可以使用以下步骤和工具: 安装音频框架:在Linux上运行语音识别系统需要一个适当的音频框架。常见的选择包括 ALSA(Advanced Linux Sound Architecture)和

    2024年02月15日
    浏览(51)
  • 基于百度语音识别API智能语音识别和字幕推荐系统——深度学习算法应用(含全部工程源码)+测试数据集

    本项目基于百度语音识别API,结合了语音识别、视频转换音频识别以及语句停顿分割识别等多种技术,从而实现了高效的视频字幕生成。 首先,我们采用百度语音识别API,通过对语音内容进行分析,将音频转换成文本。这个步骤使得我们能够从语音中提取出有意义的文本信息

    2024年02月13日
    浏览(57)
  • 基于MATLAB的语音去噪处理系统

    一.滤波器的简述 在MATLAB环境下IIR数字滤波器和FIR数字滤波器的设计方 法即实现办法,并进行图形用户界面设计,以显示所介绍迷你滤波器的设计特性。 在无线脉冲响应(IIR)数字滤波器设计中,先进行模拟滤波器的设计,然后进行模拟数字滤波器转换,即采取脉冲响应不

    2024年02月11日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包