赤池信息量准则(AIC)和贝叶斯信息准则(BIC)

这篇具有很好参考价值的文章主要介绍了赤池信息量准则(AIC)和贝叶斯信息准则(BIC)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一 AIC

赤池信息量准则(Akaike information criterion,AIC)是评估统计模型的复杂度和衡量统计模型“拟合”资料之优良性(Goodness of fit)的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则建立在信息熵的概念基础上。

在一般的情况下,AIC可以表示为:

AIC=2k−2ln(L)

其中:k是参数的数量,L是似然函数。

假设条件是模型的误差服从独立正态分布。设n为观察数,RSS为残差平方和,那么AIC变为:

AIC=2k+nln(RSS/n)

残差平方和(Residual Sum of Squares,即RSS),又称剩余平方和。统计学上,数据点与它在回归直线上相应位置的差异称为残差,把每个残差平方之后加起来称为残差平方和,它表示随机误差的效应。

二 BIC

BIC越小,模型越好。

贝叶斯信息准则,(Bayesian Information Criterion,BIC)。贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。公式为:

BIC=ln(n)k–2ln(L)

其中,k为模型参数个数,n为样本数量,L为似然函数

ln(n)k惩罚项在维数过大且训练样本数据相对较少的情况下,可以有效避免出现维度灾难现象。

与AIC相似,训练模型时,增加参数数量,也就是增加模型复杂度,会增大似然函数,但是也会导致过拟合现象,针对该问题,AIC和BIC均引入了与模型参数个数相关的惩罚项,BIC的惩罚项比AIC的大,考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。

赤池信息准则,机器学习,算法,开发语言

 参考链接:

最优模型选择准则:AIC和BIC - 知乎 (zhihu.com)

贝叶斯信息准则_哔哩哔哩_bilibili 文章来源地址https://www.toymoban.com/news/detail-798782.html

到了这里,关于赤池信息量准则(AIC)和贝叶斯信息准则(BIC)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习的学习准则(期望风险最小化、经验风险最小化、结构风险最小化)

    训练集是有N个独立同分布的样本组成,即每个样本(x,y)是独立的从相同的分布中抽取的。这个真实的分布未知 输入空间X和输出空间Y构成样本空间,对于样本空间中的样本(x, y)∈X x Y,假定x和y之间可通过一个未知的真实隐射y=g(x)来描述,或者通过真实条件概率分布来描述。

    2024年02月09日
    浏览(53)
  • 机器学习算法——贝叶斯分类器3(朴素贝叶斯分类器)

    基于贝叶斯公式来估计后验概率P(c|x)的主要困难在于:类条件概率P(x|c)是所有属性上的联合概率,难以从有限的训练样本直接估计而得。 为避开这个障碍,朴素贝叶斯分类器(Naive Bayes classfier)采用了“ 属性条件独立性假设 ”:对已知类别,假设所有属性相互独立。换句话

    2023年04月22日
    浏览(58)
  • 机器学习朴素贝叶斯笔记

    朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理和特征独立性假设的简单但有效的分类算法。它常用于文本分类、垃圾邮件过滤和情感分析等任务。下面我将详细解释朴素贝叶斯的原理和步骤。 首先,我们需要了解几个重要的概念: 贝叶斯定理(Bayes\\\' theorem):贝叶斯定理是

    2024年02月15日
    浏览(41)
  • 机器学习--朴素贝叶斯分类器

    第1关:条件概率 什么是条件概率 概率指的是某一事件 A 发生的可能性,表示为 P(A) 。而条件概率指的是某一事件 A 已经发生了条件下,另一事件 B 发生的可能性,表示为 P(B|A) ,举个例子: 今天有 25% 的可能性下雨,即 P(下雨)=0.25 ; 今天 75% 的可能性是晴天,即 P(晴天)=0.7

    2024年02月08日
    浏览(65)
  • 机器学习_9、朴素贝叶斯

    2024年01月23日
    浏览(35)
  • 【AI】机器学习——朴素贝叶斯

    用于解决分类问题:将连续取值输入映射为离散取值的输出 解决分类问题的依据是数据的属性 利用后验概率选择最佳分类,后验概率通过贝叶斯定理求解 朴素贝叶斯假定所有属性相互独立,基于这一假设将类条件概率转化为属性条件概率的乘积 朴素贝叶斯方法可以使期望风

    2024年02月09日
    浏览(41)
  • 机器学习之朴素贝叶斯一

    朴素贝叶斯算法是典型的有监督学习算法,解决的是分类问题 贝叶斯算法是一种基于贝叶斯定理的分类算法,它的优点和缺点如下: 优点: 算法原理简单易懂,实现较为容易; 可以利用先验知识对模型进行训练,并不需要大量的数据就可以得到合理的预测结果; 对噪声数

    2024年02月06日
    浏览(38)
  • 机器学习课后习题 --- 朴素贝叶斯

    1.假设会开车的本科生比例是15%,会开车的研究生比例是23%。若在某大学研究生占学生比例是20%,则会开车的学生是研究生的概率是多少? A:80% B:16.6% C:23% D:15%   2.下列关于朴素贝叶斯的特点说法错误的是() A:朴素贝叶斯模型发源于古典数学理论,数学基础坚实 B:朴素贝叶斯

    2024年02月10日
    浏览(43)
  • 【机器学习笔记】4 朴素贝叶斯

    贝叶斯分类 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。 先验概率 根据以往经验和分析得到的概率。我们用𝑃(𝑌)来代表在没有训练数据前假设𝑌拥有的初始概率。

    2024年02月19日
    浏览(46)
  • 机器学习实验 - 朴素贝叶斯分类器

    报告内容仅供学习参考,请独立完成作业和实验喔~ 1.1 实验要求 (1)了解朴素贝叶斯与半朴素贝叶斯的区别与联系,掌握高斯分布、多项式分布和伯努利分布的朴素贝叶斯计算方法。 (2)编程实现朴素贝叶斯分类器,基于多分类数据集,使用朴素贝叶斯分类器实现多分类预

    2024年02月09日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包