Pandas实战100例 | 案例 53: 处理缺失值

这篇具有很好参考价值的文章主要介绍了Pandas实战100例 | 案例 53: 处理缺失值。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

案例 53: 处理缺失值

知识点讲解

在数据分析中,处理缺失值是一个常见且重要的步骤。Pandas 提供了多种方法来处理 DataFrame 中的缺失值,包括填充缺失值和删除含有缺失值的行或列。文章来源地址https://www.toymoban.com/news/detail-799155.html

  • 填充缺失值: 使用 fillna 方法可以将缺失值替换为指定的值。
  • 删除缺失值: 使用 dropna 方法可以删除含有缺失值的行或列。
示例代码
# 准备数据和示例代码的运行结果,用于案例 53

# 示例数据
data_missing_values_handling = {
   
    'A': [1, 2, None, 

到了这里,关于Pandas实战100例 | 案例 53: 处理缺失值的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pandas实战100例 | 案例 25: 计算相关系数

    案例 25: 计算相关系数 知识点讲解 在统计分析中,了解变量之间的关系是非常重要的。相关系数是衡量变量之间线性相关程度的一种方法。Pandas 提供了 corr 方法来计算列之间的相关系数。 相关系数 : 相关系数的值范围在 -1 到 1 之间。接近 1 表示正相关,接近 -1 表示负相关

    2024年01月21日
    浏览(43)
  • Pandas实战100例 | 案例 54: 日期时间运算

    案例 54: 日期时间运算 知识点讲解 当处理带有 datetime 类型数据的 DataFrame 时,Pandas 提供了多种方法来提取和计算日期时间组件。这包括提取年份、月份、日期、星期几以及小时等。 提取日期时间组件 : 使用 .dt 访问器,可以从 datetime 类型的列中提取各种日期时间组件。 示例

    2024年01月16日
    浏览(41)
  • Pandas实战100例 | 案例 20: 日期时间运算

    案例 20: 日期时间运算 知识点讲解 Pandas 提供了强大的日期和时间处理功能。你可以从 datetime 类型的列中提取出年份、月份、日、星期等信息,也可以进行日期时间的加减运算。 提取日期时间信息 : 使用 dt 访问器,你可以从 datetime 类型的列中提取出年份 ( year )、月份 ( mon

    2024年01月21日
    浏览(53)
  • Pandas实战100例 | 案例 31: 转换为分类数据

    案例 31: 转换为分类数据 知识点讲解 在处理包含文本数据的 DataFrame 时,将文本列转换为分类数据类型通常是一个好主意。这可以提高性能并节省内存。Pandas 允许将列转换为 category 类型。 分类数据类型 : category 类型适用于那些只包含有限数量不同值的列(例如,性别、产品

    2024年02月02日
    浏览(43)
  • Pandas实战100例 | 案例 41: 字符串操作

    案例 41: 字符串操作 知识点讲解 Pandas 提供了强大的字符串处理功能,这些功能类似于 Python 的标准字符串方法。你可以对 DataFrame 中的字符串数据执行各种操作,如分割、提取、计算长度等。 字符串分割 : 使用 str.split() 分割字符串。 提取字符串 : 使用 str.get() 获取分割后的

    2024年01月21日
    浏览(38)
  • Pandas实战100例 | 案例 70: 分组后计算排名

    案例 70: 分组后计算排名 知识点讲解 在数据分析中,我们经常需要在分组基础上进行排名。Pandas 允许在对数据分组后,对每个分组内的数据进行排名。 分组后计算排名 : 使用 groupby 方法创建分组,然后对每个组应用 rank 方法来计算排名。这可以为每个组内的元素分配一个基

    2024年01月17日
    浏览(43)
  • Pandas实战100例 | 案例 50: 分组后的过滤

    案例 50: 分组后的过滤 知识点讲解 在 Pandas 中,你可以对分组后的数据进行过滤,根据每个组的特性选择或排除特定的组。这通常通过 groupby 结合 filter 方法实现。 分组后的过滤 : 使用 filter 方法,可以根据分组的属性(如组内均值、最大值等)决定是否保留整个组。 示例代

    2024年01月15日
    浏览(40)
  • Pandas实战100例 | 案例 15: 移动平均 - 使用 `rolling` 方法

    案例 15: 移动平均 - 使用 rolling 方法 知识点讲解 移动平均是时间序列数据分析中的一种基本技术,用于平滑时间序列中的短期波动并突出长期趋势。Pandas 的 rolling 方法提供了计算移动平均的简便方式。 计算移动平均 : 使用 rolling 方法,你可以指定窗口大小来计算移动平均。

    2024年01月20日
    浏览(44)
  • Pandas实战100例 | 案例 24: 数据可视化 - 绘制基本图形

    案例 24: 数据可视化 - 绘制基本图形 知识点讲解 数据可视化是数据分析中的一个重要环节,可以帮助更好地理解和解释数据。Pandas 集成了 Matplotlib,提供了简单的方法来绘制各种图形,如折线图、条形图、散点图等。 绘制图形 : 使用 DataFrame 的 plot 方法可以绘制不同类型的图

    2024年01月17日
    浏览(48)
  • Pandas实战100例 | 案例 16: 字符串操作 - 分割和转换

    案例 16: 字符串操作 - 分割和转换 知识点讲解 Pandas 提供了丰富的字符串操作功能,这些功能很大程度上类似于 Python 原生的字符串方法。你可以对 DataFrame 或 Series 中的字符串进行分割、转换、替换等操作。这些操作在处理文本数据时非常有用。 字符串分割 : 使用 split 方法分

    2024年02月02日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包