一篇博客彻底掌握:粒子滤波 particle filter (PF) 的理论及实践(matlab版)

这篇具有很好参考价值的文章主要介绍了一篇博客彻底掌握:粒子滤波 particle filter (PF) 的理论及实践(matlab版)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

粒子滤波在目标跟踪中的应用:粒子滤波VS无迹卡尔曼滤波

粒子滤波—从贝叶斯滤波到粒子滤波理论到实践

原创不易,路过的各位大佬请点个赞文章来源地址https://www.toymoban.com/news/detail-799217.html

机动目标跟踪/非线性滤波/传感器融合/导航等探讨代码联系WX: ZB823618313

在非线性条件下,贝叶斯滤波面临一个重要问题是状态分布的表达和积分式的求解,由前面章节中的分析可知,对于一般的非线性/非高斯系统,解析求解的途径是行不通的。在数值近似方法中,蒙特卡罗仿真是一种最为通用、有效的手段,粒子滤波就是建立在蒙特卡罗仿真基础之上的,它通过利用一组带权值的系统状态采样来近似状态的统计分布。由于蒙特卡罗仿真方法具有广泛的适用性,由此得到的粒子滤波算法也能适用于一般的非线性/非高斯系统。但是,这种滤波方法也面临几个重要问题,如有效采样(粒子)如何产生、粒子如何传递以及系统状态的序贯估计如何得到等。

简单的理解,粒子滤波就是使用了大量的随机样本,采用蒙特卡洛(MonteCarlo,MC)仿真技术完成贝叶斯递推滤波(Recursive Bayesian Filter)过程。因此本博客从贝叶斯滤波出发,简单介绍粒子滤波PF的出生、即应用

1、问题描述

考虑离散时间非线性系统动态模型,
x k = f ( x k − 1 , w k − 1 ) z k = h ( x k , v k ) (1) x_k=f(x_{k-1},w_{k-1}) \\ z_k=h(x_k,v_k ) \tag{1} xk=f(xk1,wk1)zk=h(xk,vk)(1)
其中 x k x_k xk k k k时刻的目标状态向量, z k z_k zk k k k时刻量测向量(传感器数据)。这里不考虑控制器 u k u_k uk w k {w_k} wk v k {v_k} vk分别是过程噪声序列和量测噪声序列。 w k w_k wk v k v_k vk为零均值高斯白噪声。

由于贝叶斯滤波的递推形式是基于非线性系统的后验概率密度,因此这里并不需要假设 w k w_k wk v k v_k vk为零均值高斯白噪声。而KF、EKF、CKF、QKF等需要假设过程、测量噪声为高斯白噪声。

因此基于贝叶斯滤波的粒子滤波可以处理非线性非高斯的状态估计问题。

定义 1 1 1 ~ k k k时刻对状态 x k x_k xk的所有测量数据为
z k = [ z 1 T , z 2 T , ⋯   , z k T ] T z^k=[z_1^T,z_2^T,\cdots,z_k^T]^T zk=[z1T,z2T,,zkT]T

贝叶斯滤波问题就是计算对 k k k时刻状态 x x x估计的置信程度,为此构造概率密度函数 p ( x k ∣ z k ) p(x_k |z^k) p(xkzk),在给定初始分布 p ( x 0 ∣ z 0 ) = p ( x 0 ) p(x_0|z_0)= p(x_0) p(x0z0)=p(x0)后,从理论上看,可以通过预测和更新两个步骤递推得到概率密度函数 p ( x k ∣ z k ) p(x_k |z^k) p(xkzk)的值。

是不是卡尔曼滤波的雏形出现了,哈哈哈,预测、更新也存在KF中。

2、递推贝叶斯滤波

1)预测

现假定 k − 1 k- 1 k1时刻的概率密度函数已知,则通过将Chapman-Kolmogorov等式应用
于动态方程(1),即可预测 k k k时刻状态的先验概率密度函数为
p ( x k ∣ z k − 1 ) = ∫ p ( x k ∣ x k − 1 ) p ( k − 1 ∣ z k − 1 ) d x k − 1 ) (2) p(x_k |z^{k-1})=\int p(x_k |x_{k-1})p({k-1} |z^{k-1}) dx_{k-1}) \tag{2} p(xkzk1)=p(xkxk1)p(k1zk1)dxk1)(2)

实际上,状态转移方程写为概率密度的形式即为: x k = f ( x k − 1 , w k − 1 ) = 等价 p ( x k ∣ x k − 1 ) x_k=f(x_{k-1},w_{k-1}) \underset{\text{等价}}= p(x_k |x_{k-1}) xk=f(xk1,wk1)等价=p(xkxk1)
式(2)中隐含假定了 p ( x k ∣ x k − 1 ) = p ( x k ∣ x k − 1 , z k − 1 ) p(x_k |x_{k-1})= p(x_k |x_{k-1}, z^{k-1}) p(xkxk1)=p(xkxk1,zk1),实际上这本身在这里就是成立的,基于(1)式的马尔可夫过程。

2)更新

在获得 p ( x k ∣ z k − 1 ) p(x_k |z^{k-1}) p(xkzk1)的基础上,结合 k k k时刻得到的新的量测值,基于贝叶斯公式,可以计算 k k k时刻状态的后验概率密度函数:
p ( x k ∣ z k ) = p ( z k ∣ x k ) p ( x k ∣ z k − 1 ) p ( z k ∣ z k − 1 ) (3) p(x_k |z^{k})=\frac{p(z_k |x_k)p(x_k |z^{k-1})}{p(z_k |z^{k-1})} \tag{3} p(xkzk)=p(zkzk1)p(zkxk)p(xkzk1)(3)
式中分子 p ( z k ∣ z k − 1 ) p(z_k |z^{k-1}) p(zkzk1)有全概率公式得到
p ( z k ∣ z k − 1 ) = ∫ p ( z k ∣ x k ) p ( x k ∣ z k − 1 ) d x k (4) p(z_k |z^{k-1})=\int p(z_k |x_k)p(x_k |z^{k-1}) dx_{k} \tag{4} p(zkzk1)=p(zkxk)p(xkzk1)dxk(4)

我就说吧,上述过程实际上贝叶斯后燕推断的公式,哈哈哈哈啊哈

实际上这也是卡尔曼滤波的更新思想:在 k k k时刻得到测量 z k z_k zk后,利用测量 z k z_k zk修正先验概率,进而获得当前时刻状态的后验概率。我正是太机智了,哈哈啊哈

3) 基于 p ( x k ∣ z k ) p(x_k |z^{k}) p(xkzk)的各种滤波器

说实话,你关于状态 x k x_k xk的概率密度函数(分布)都得到了,难道确定他们的各种估计还难吗?

这里给所有有缘人提醒下,实际上各种滤波、估计就是求 p ( x k ∣ z k ) p(x_k |z^{k}) p(xkzk)的一阶矩( x k x_k xk的估计)以及二阶矩(估计的协方)。(基操、勿6)

式(3)描述了一个由 k − 1 k-1 k1时刻后验概率密度函数向 k k k时刻后验概率密度函数递推的完整过程,从而构成了贝叶斯估计最优解的通用表示形式。进而通过后验分布 p ( x k ∣ z k ) p(x_k |z^{k}) p(xkzk)可以得到不同准则条件下 x x x的最优估计划。

如最小均方误差(MMSE)估计为:
x ^ k = E [ x k ∣ z k ] = ∫ x k p ( x k ∣ z k ) d x k (5) \hat{x}_k=E[x_k|z_k]=\int x_kp(x_k |z^{k}) dx_k \tag{5} x^k=E[xkzk]=xkp(xkzk)dxk(5)

最大后验(MAP)估计为:
x ^ k = arg ⁡ min ⁡ x k p ( x k ∣ z k ) \hat{x}_k=\arg \min_{x_k} p(x_k |z^{k}) x^k=argxkminp(xkzk)

实际上粒子滤波就是基于蒙特卡洛技术、将上述递推过程用大量采样的方式实现了。

是不是看到这里,有一种豁然开朗的感觉,实际上上面的介绍及推导都是简化版本,也加了本人一些愚钝的理解在里面,因此也是有一些误区、对高水平之人、还是建议看经典的著作最为有用和严谨。

3、 标准的粒子滤波PF

核心思想:是使用一组具有相应权值的随机样本(粒子)来表示状态的后验分布。该方法的基本思路是选取一个重要性概率密度并从中进行随机抽样,得到一些带有相应权值的随机样本后,在状态观测的基础上调节权值的大小。和粒子的位置,再使用这些样本来逼近状态后验分布,最后将这组样本的加权求和作为状态的估计值。粒子滤波不受系统模型的线性和高斯假设约束,采用样本形式而不是函数形式对状态概率密度进行描述,使其不需要对状态变量的概率分布进行过多的约束,因而在非线性非高斯动态系统中广泛应用。尽管如此,粒子滤波目前仍存在计算量过大、粒子退化等关键问题亟待突破。

粒子滤波实际上是上述基于递推贝叶斯滤波的MMSE(5)估计的近似实现,而近似方法就是蒙特卡洛方法。到这里应该很多人就明白了为什么将粒子滤波都要提及贝叶斯滤波。

通常情况下选择先验分布作为重要性密度函数、即
q ( x k ∣ x k − 1 ( i ) , z k ) = p ( x k ∣ x k − 1 ( i ) ) q(x_k |x_{k-1}^{(i)}, z_{k})=p(x_k |x_{k-1}^{(i)}) q(xkxk1(i),zk)=p(xkxk1(i))
对该函数取重要性权值为
w k ( i ) = w k − 1 ( i ) p ( z k ∣ x k ( i ) ) w_k^{(i)}=w_{k-1}^{(i)}p(z_k |x_{k}^{(i)}) wk(i)=wk1(i)p(zkxk(i))
同样 w k ( i ) w_k^{(i)} wk(i)需要归一化得到 w ~ k ( i ) \tilde{w}_k^{(i)} w~k(i)

标准的粒子滤波算法步骤为:

粒子滤波PF:
Step 1: 根据 p ( x 0 ) p(x_{0}) p(x0)采样得到 N N N个粒子 x 0 ( i ) ∼ p ( x 0 ) x_0^{(i)} \sim p(x_{0}) x0(i)p(x0)
For i = 2 : N i=2:N i=2:N
  Step 2: 根据状态转移函数产生新的粒子为:$ x k ( i ) ∼ p ( x k ∣ x k − 1 ( i ) ) x_k^{(i)} \sim p(x_{k} |x_{k-1}^{(i)}) xk(i)p(xkxk1(i))
  Step 3: 计算重要性权值: w k ( i ) = w k − 1 ( i ) p ( z k ∣ x k ( i ) ) w_k^{(i)}=w_{k-1}^{(i)}p(z_k |x_{k}^{(i)}) wk(i)=wk1(i)p(zkxk(i))
  Step 4: 归一化重要性权值: w ~ k ( i ) = w k ( i ) ∑ j = 1 N w k ( j ) \tilde{w}_k^{(i)}=\frac{w_k^{(i)}}{\sum_{j=1}^Nw_k^{(j)}} w~k(i)=j=1Nwk(j)wk(i)
  Step 5: 使用重采样方法对粒子进行重采样(以系统重采样为例)(见面)
  Step 6: 得到 k k k时刻的后验状态估计:
E [ x ^ k ] = ∑ i = 1 N x k ( i ) w ~ k ( i ) E[\hat{x}_{k}]= \sum_{i=1}^Nx_{k}^{(i)}\tilde{w}_k^{(i)} E[x^k]=i=1Nxk(i)w~k(i)
End For

粒子滤波PF算法结构图
粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

算法:系统重采样 (systematic resampling)
For i = 1 : N i=1:N i=1:N
  Step 1: 初始化累积概率密度函数CDF: c 1 = 0 c_1=0 c1=0
For i = 2 : N i=2:N i=2:N
  Step 2: 构造CDF: c i = c i − 1 + w k ( i ) c_i=c_{i-1}+w_k^{(i)} ci=ci1+wk(i)
  Step 3: 从CDF的底部开始: i = 1 i=1 i=1
  Step 4: 采样起始点: u 1 = U [ 0 , 1 / N ] u_1=\mathcal{U}[0,1/N] u1=U[0,1/N]
End For
For j = 1 : N j=1:N j=1:N
  Step 5: 沿CDF移动: u j = u 1 + ( j − 1 ) / N u_j=u_{1}+(j-1)/N uj=u1+(j1)/N
  Step 6: While u j > c i u_j>c_i uj>ci
       i = i + 1 i=i+1 i=i+1
     End While
  Step 7: 赋值粒子: x k ( j ) = x k ( i ) x_k^{(j)}=x_k^{(i)} xk(j)=xk(i)
  Step 8: 赋值权值: w k ( j ) = 1 / N w_k^{(j)}=1/N wk(j)=1/N
  Step 9: 赋值父代: i ( j ) = i i^{(j)}=i i(j)=i
End For

重采样的思路是:既然那些权重小的不起作用了,那就不要了。要保持粒子数目不变,得用一些新的粒子来取代它们。找新粒子最简单的方法就是将权重大的粒子多复制几个出来,至于复制几个?那就在权重大的粒子里面让它们根据自己权重所占的比例去分配,也就是老大分身分得最多,老二分得次多,以此类推。下面以数学的形式来进行说明。

除了系统重采样方法,还有几种重采样方法:
多项式重采样
残差重采样
随机重采样

5、粒子滤波PF的在目标跟踪应用:

5.1、 仿真参数

**一、目标模型:CT(细节见另一个博客) **

X k + 1 = [ 1 sin ⁡ ( ω T ) ω 0 − 1 − cos ⁡ ( ω T ) ω 0 cos ⁡ ( ω T ) 0 − sin ⁡ ( ω T ) 0 1 − cos ⁡ ( ω T ) ω 1 sin ⁡ ( ω T ) ω 0 sin ⁡ ( ω T ) 0 cos ⁡ ( ω T ) ] X k + [ T 2 / 2 0 T 0 0 T 2 / 2 0 T ] W k X_{k+1}=\begin{bmatrix}1&\frac{\sin(\omega T)}{\omega}&0&-\frac{1-\cos(\omega T)}{\omega}\\0&\cos(\omega T)&0&-\sin(\omega T)\\0&\frac{1-\cos(\omega T)}{\omega}&1&\frac{\sin(\omega T)}{\omega}\\0&\sin(\omega T)&0&\cos(\omega T)\end{bmatrix}X_{k} + \begin{bmatrix}T^2/2&0\\T&0\\0&T^2/2\\0&T\end{bmatrix}W_k Xk+1=1000ωsin(ωT)cos(ωT)ω1cos(ωT)sin(ωT)0010ω1cos(ωT)sin(ωT)ωsin(ωT)cos(ωT)Xk+T2/2T0000T2/2TWk

CV CT 模型的具体方程形式见另一个博客

二、测量模型:2D主动雷达
在二维情况下,雷达量测为距离和角度
r k m = r k + r ~ k b k m = b k + b ~ k {r}_k^m=r_k+\tilde{r}_k\\ b^m_k=b_k+\tilde{b}_k rkm=rk+r~kbkm=bk+b~k
其中
r k = ( x k − x 0 ) + ( y k − y 0 ) 2 ) b k = tan ⁡ − 1 y k − y 0 x k − x 0 r_k=\sqrt{(x_k-x_0)^+(y_k-y_0)^2)}\\ b_k=\tan^{-1}{\frac{y_k-y_0}{x_k-x_0}}\\ rk=(xkx0)+(yky0)2) bk=tan1xkx0yky0
[ x 0 , y 0 ] [x_0,y_0] [x0,y0]为雷达坐标,一般情况为0。雷达量测为 z k = [ r k , b k ] ′ z_k=[r_k,b_k]' zk=[rk,bk]。雷达量测方差为
R k = cov ( v k ) = [ σ r 2 0 0 σ b 2 ] R_k=\text{cov}(v_k)=\begin{bmatrix}\sigma_r^2 & 0 \\0 & \sigma_b^2 \end{bmatrix} Rk=cov(vk)=[σr200σb2]

5.2、 跟踪轨迹和误差

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪
粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

6、粒子滤波PF的标准验证模型

6.1、 模型参数

状态模型:
x ( k ) = f ( x ( k − 1 ) , k ) + w ( k − 1 ) x(k) = f (x(k-1), k) + w(k-1) x(k)=f(x(k1),k)+w(k1)
其中
f ( x ( ( k − 1 ) , k ) = 0.5 x ( k − 1 ) + 2.5 x ( k − 1 ) / ( 1 + x ( k − 1 ) 2 ) + 8 cos ⁡ ( 1.2 k ) f(x((k-1), k) = 0.5x(k-1) + 2.5x(k-1) / (1+x(k-1)^2) + 8\cos(1.2k) f(x((k1),k)=0.5x(k1)+2.5x(k1)/(1+x(k1)2)+8cos(1.2k)
测量方程为:
z ( k ) = x ( k ) 2 / 20 + v ( k ) z(k) = x(k)^2 / 20 +v(k) z(k)=x(k)2/20+v(k)

w ( k ) w(k) w(k), v ( k ) v(k) v(k)为均值为 0 0 0、方差分别为 Q ( k ) = 10 Q(k)=10 Q(k)=10, R ( k ) = 1 R(k)=1 R(k)=1的高斯噪声。状态 x ( k ) x(k) x(k) x ( k − 1 ) x(k-1) x(k1)为非线性关系,观测方程中 z ( k ) z(k) z(k)和x ( k ) (k) (k)也是非线性关系。

6.2、 基于随机重采样粒子滤波PF

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

6.3、 基于多项式重采样粒子滤波PF

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

6.4、 基于残差重采样粒子滤波PF

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

6.5、 基于系统重采样粒子滤波PF

粒子滤波matlab,非线性滤波-目标跟踪应用,粒子滤波,matlab,无迹卡尔曼滤波,目标跟踪

6.6、 基于系统重采样粒子滤波PF代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 粒子滤波一维系统仿真
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ParticleFilter_standardmodel
clear all;close all;clc;

randn('seed',1); %为了保证每次运行结果一致,给定随机数的种子点
%初始化相关参数
T=50;%采样点数
dt=1;%采样周期
Q=10;%过程噪声方差
R=1;%测量噪声方差
v=sqrt(R)*randn(T,1);%测量噪声
w=sqrt(Q)*randn(T,1);%过程噪声
numSamples=100;%粒子数
%%%%%%%%%%%%%%%%%%%%%%%%%%%
x0=0.1;%初始状态
%产生真实状态和观测值
X=zeros(T,1);%真实状态
Z=zeros(T,1);%量测
X(1,1)=x0;%真实状态初始化
Z(1,1)=(X(1,1)^2)./20+v(1,1);%观测值初始化
for k=2:T
	%状态方程
	X(k,1)=0.5*X(k-1,1)+2.5*X(k-1,1)/(1+X(k-1,1)^2)+8*cos(1.2*k)+w(k-1,1);
	%观测方程
	Z(k,1)=(X(k,1).^2)./20+v(k,1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%粒子滤波器初始化,需要设置用于存放滤波估计状态,粒子集合,权重等数组
Xpf=zeros(numSamples,T);%粒子滤波估计状态
Xparticles=zeros(numSamples,T);%粒子集合
Zpre_pf=zeros(numSamples,T);%粒子滤波观测预测值
weight=zeros(numSamples,T);%权重初始化
%给定状态和观测预测的初始采样:
Xpf(:,1)=x0+sqrt(Q)*randn(numSamples,1);
Zpre_pf(:,1)=Xpf(:,1).^2/20;
%更新与预测过程
for k=2:T
	%第一步:粒子集合采样过程
	for i=1:numSamples
		QQ=Q;%跟卡尔曼滤波不同,这里的Q不要求与过程噪声方差一致
		net=sqrt(QQ)*randn;%这里的QQ可以看成是网的半径,数值可调
		Xparticles(i,k)=0.5.*Xpf(i,k-1)+2.5.*Xpf(i,k-1)./(1+Xpf(i,k-1).^2)+8*cos(1.2*k)+net;
	end
	%第二步:对粒子集合中的每个粒子,计算其重要性权值
	for i=1:numSamples
		Zpre_pf(i,k)=Xparticles(i,k)^2/20;
		weight(i,k)=exp(-.5*R^(-1)*(Z(k,1)-Zpre_pf(i,k))^2);%省略了常数项
	end
	weight(:,k)=weight(:,k)./sum(weight(:,k));%归一化权值
	%第三步:根据权值大小对粒子集合重采样,权值集合和粒子集合是一一对应的
	%选择采样策略
		outIndex = systematicR(weight(:,k)');
	%第四步:根据重采样得到的索引,去挑选对应的粒子,重构的集合便是滤波后的状态集合
	%对这个状态集合求均值,就是最终的目标状态、
	Xpf(:,k)=Xparticles(outIndex,k);
end
%计算后验均值估计、最大后验估计及估计方差
Xmean_pf=mean(Xpf);%后验均值估计,及上面的第四步,也即粒子滤波估计的最终状态
bins=20;
Xmap_pf=zeros(T,1);
for k=1:T
	[p,pos]=hist(Xpf(:,k,1),bins);
	map=find(p==max(p));
	Xmap_pf(k,1)=pos(map(1));%最大后验估计
end
for k=1:T
	Xstd_pf(1,k)=std(Xpf(:,k)-X(k,1));%后验误差标准差估计
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%画图
figure();clf;%过程噪声和测量噪声图
subplot(221);
plot(v);%测量噪声
xlabel('时间');ylabel('测量噪声');
subplot(222);
plot(w);%过程噪声
xlabel('时间');ylabel('过程噪声');
subplot(223);
plot(X);%真实状态
xlabel('时间');ylabel('状态X');
subplot(224);
plot(Z);%观测值
xlabel('时间');ylabel('观测Z');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure();
k=1:dt:T;
plot(k,X,'.-k',k,Xmean_pf,'--ro',k,Xmap_pf,'-.g+','LineWidth',1);%注:Xmean_pf就是粒子滤波结果
legend('系统真实状态值','后验均值估计','最大后验概率估计');
xlabel('时间');ylabel('状态估计');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure();
subplot(121);
plot(Xmean_pf,X,'+');%粒子滤波估计值与真实状态值如成1:1关系,则会对称分布
xlabel('后验均值估计');ylabel('真值');
hold on;
c=-25:1:25;
plot(c,c,'r');%画红色的对称线y=x
hold off;
subplot(122);%最大后验估计值与真实状态值如成1:1关系,则会对称分布
plot(Xmap_pf,X,'+');
xlabel('Map估计');ylabel('真值');
hold on;
c=-25:25;
plot(c,c,'r');%画红色的对称线y=x
hold off;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%画直方图,此图形是为了看粒子集的后验密度
domain=zeros(numSamples,1);
range=zeros(numSamples,1);
bins=10;
support=[-20:1:20];
figure();
hold on;%直方图
xlabel('时间');ylabel('样本空间');
vect=[0 1];
caxis(vect);
for k=1:T
	%直方图反映滤波后的粒子集合的分布情况
	[range,domain]=hist(Xpf(:,k),support);
	%调用waterfall函数,将直方图分布的数据画出来
	waterfall(domain,k,range);
end
axis([-20 20 0 T 0 100]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure();
xlabel('样本空间');ylabel('后验密度');
k=30;%k=?表示要查看第几个时刻的粒子分布与真实状态值的重叠关系
[range,domain]=hist(Xpf(:,k),support);
plot(domain,range);
%真实状态在样本空间中的位置,画一条红色直线表示
XXX=[X(k,1),X(k,1)];
YYY=[0,max(range)+10];
line(XXX,YYY,'Color','r');
axis([min(domain) max(domain) 0 max(range)+10]);
figure();
k=1:dt:T;
plot(k,Xstd_pf,'-ro','LineWidth',1);
xlabel('时间');ylabel('状态估计误差标准差');
axis([0,T,0,10]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 系统重采样子函数
% 输入参数:weight为原始数据对应的权重大小
% 输出参数:outIndex是根据weight筛选和复制结果
function outIndex = systematicR(weight);
N=length(weight);
N_children=zeros(1,N);
label=zeros(1,N);
label=1:1:N;
s=1/N;
auxw=0;
auxl=0;
li=0;
T=s*rand(1);
j=1;
Q=0;
i=0;
u=rand(1,N);
while (T<1)
    if (Q>T)
        T=T+s;
        N_children(1,li)=N_children(1,li)+1;
    else
        i=fix((N-j+1)*u(1,j))+j;
        auxw=weight(1,i);
        li=label(1,i);
        Q=Q+auxw;
        weight(1,i)=weight(1,j);
        label(1,i)=label(1,j);
        j=j+1;
    end
end
index=1;
for i=1:N
    if (N_children(1,i)>0)
        for j=index:index+N_children(1,i)-1
            outIndex(j) = i;
        end;
    end;
    index= index+N_children(1,i);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PF的妈妈贝叶斯滤波Part-I、蒙特卡洛方法Part-II、序贯重采样Part-III

原创不易,路过的各位大佬请点个赞

到了这里,关于一篇博客彻底掌握:粒子滤波 particle filter (PF) 的理论及实践(matlab版)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 详解Unity中的粒子系统Particle System (三)

    上一篇我们详细讲解了有关主模块的全部内容,已经对粒子系统的基本运作有了足够的了解,本篇就来讲一下被粒子系统默认启用的Emission、Shape、Renderer模块又在粒子系统中扮演着怎么样的作用吧。 本系列提要 Unity粒子系统专题博客共分成十二篇来讲解: 【本篇为第三篇】

    2024年02月02日
    浏览(44)
  • 详解Unity中的粒子系统Particle System (十一)

    今天讲最后一个模块——External Forces,该模块需要和Force Field组件配合使用,作用是模拟物理的力对粒子的影响。至此,Unity内置粒子系统的最后一块物理砖补齐,理论上来讲我们已经可以通过粒子系统来模拟世间万物了。废话不多说,进入正题。 本系列提要 Unity粒子系统专

    2024年02月13日
    浏览(36)
  • 【NPM】particles.vue3 + tsparticles 实现粒子效果

    在 NPM 官网搜索这两个库并安装: 使用提供的 vue 案例和方法: 即可出现粒子效果。

    2024年02月07日
    浏览(36)
  • 粒子群算法 PSO(Particle Swarm Optimization)——原理及实现

    粒子群优化算法(PSO:Particle swarm optimization)是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广

    2024年02月05日
    浏览(38)
  • 自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 提示:这里可以添加本文要记录的大概内容: 下面是一个关于自适应粒子群优化(Adaptive Particle Swarm Optimization,APSO)的博客,希望可以帮助您。 提示:以下是本篇文章正文内容,下面案例可供参考 自

    2024年02月03日
    浏览(41)
  • Particle Swarm Optimization粒子群优化算法(PSO算法)概念及实战

    粒子群算法(PSO算法) 粒子群算法,又称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA),由Eberhart 博士和Kennedy 博士于1995年提出,其源于对鸟群捕食的行为研究。 PSO模拟鸟群的捕食行为。 设想这样一

    2024年02月16日
    浏览(38)
  • 用Unity来下一场雪吧——Particle System 下雪粒子特效

    一 制作下雪粒子特效 1 添加Particle System (1)Hierarchy窗口右键 Effects Particle System  (2)新建一块Plane作为地面,并且把Particle Syetem位置移到Plane上方。 (3)旋转Directional Light,使背景变暗(随意即可),便于观察。 2 设置Shape模块 Shape模块定义粒子发射器的形状,可提供沿着该形状表面法

    2023年04月16日
    浏览(34)
  • 了解卡尔曼滤波器4--非线性状态估算器(EKF,UKF,PF)

            一般来说,我们希望我们的生活是线性的,就像这条线,这可能表示成功、收入或者幸福。但实际上,生活并不是线性的,它充满了起伏,有时甚至更复杂。         如果您是工程师,您经常会需要处理非线性系统,为了帮助您,我们将讨论非线性状态估算器

    2023年04月20日
    浏览(54)
  • 粒子群算法(Particle Swarm Optimization(PSO)附简单案例及详细matlab源码)

    作者 :非妃是公主 专栏 :《智能优化算法》 博客地址 :https://blog.csdn.net/myf_666 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 专栏名称 专栏地址 软件工程 专栏——软件工程 计算机图形学 专栏——计算机图形学 操作系统 专栏——操作系统 软件测试 专

    2024年02月09日
    浏览(46)
  • UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.5->2.3

    目录 之前的文章: 1.5 Blend Attributes by Value 发射器更新  粒子生成  粒子更新 2.1 Static Beams  ​编辑 发射器更新:  粒子生成  粒子更新 2.2 Dynamic Beams 没有开始模拟前的效果是: 开始模拟后的效果是: 发射器更新 粒子生成 ​编辑  粒子更新 2.3 Multiple Renderers  发射器更新

    2024年02月11日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包