人工智能、机器学习与深度学习之间的关系

这篇具有很好参考价值的文章主要介绍了人工智能、机器学习与深度学习之间的关系。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

人工智能、机器学习与深度学习之间的关系



人工智能、机器学习与深度学习之间的关系,数字图像序列中的微小目标识别方法,人工智能,机器学习,深度学习

图1. AI、ML与DL关系图

一、 什么是人工智能?

在我们深入研究机器学习和深度学习之前,让我们快速浏览一下它们所属的分支:人工智能(AI)。简而言之,人工智能是一个将计算机科学与大量数据相结合以帮助解决问题的领域。人工智能有许多不同的用例。图像识别,图像分类,自然语言处理,语音识别,面部识别等。

人工智能主要有两种类型:弱人工智能和强人工智能。弱人工智能旨在执行特定任务,它使自动驾驶汽车和 Amazon Alexa 等应用程序能够运行。强人工智能目前还没有实际应用,但它是一个正在研究和探索的领域。它以具有人类智能和意识的机器为中心,具有学习、制定计划和解决问题的能力。

二、 什么是机器学习?

机器学习是人工智能的一个子领域。机器学习通过算法解析数据,从中学习,并运用知识做出明智的决策。机器学习模型的目标是使计算机能够自主执行任务,而无需人工干预或特定编程

开始时,向计算机输入训练数据。它使用这些数据来学习将来如何根据这些数据采取行动。一旦这些模型被实现,计算机就可以在无需我们帮助情况下,接受新数据并对其采取行动。随着学习的推进,计算机便可以开始识别未标记的数据。

机器学习的类型

该领域分为机器学习的三个子集:监督学习、无监督学习和强化学习。

1. 监督学习

监督学习使用标记数据集来训练算法。目标是训练这些算法独立地对数据进行分类并准确地预测结果。通俗的说就是,人类希望通过教会机器,按照给定的规则去完成一件对于机器来说比较复杂的事。监督学习的一个非常实际的应用是邮件收件箱中的垃圾邮件检测。

监督学习侧重于解决两类问题:回归和分类。回归的输出变量是真实值,例如某人的年龄或体重。解决这些问题的主要模型是线性回归。分类具有属于类别的输出类别,例如“哺乳动物”或“两栖动物”。用于解决这些问题的主要模型是决策树、逻辑回归和随机森林

2. 无监督学习

无监督学习使用未标记的数据集集群。这些机器学习算法有助于发现隐藏的模式或数据组。无监督学习的一个常见应用是图像识别。无监督学习模型包括聚类、异常检测等。

3. 强化学习(弱监督学习)

强化学习,可以训练模型做出一系列决策。可以将其视为一个试错游戏。为了让机器做我们希望它做的事情,我们根据它的行为给予奖励或惩罚。我们希望它学习如何最大化奖励。现实世界中的一个例子是 Facebook 的 Horizo​​n,它使用强化学习来执行个性化建议以及向用户提供更有意义的通知等操作。

4. 监督学习与强化学习的区别

学习方式 监督学习 非监督学习 强化学习
条件 在有标签数据的情况下进行学习 在没有标签数据的情况下进行学习 在与环境交互的过程中进行学习
目标 学习一个从输入到输出的映射关系 学习数据中的内在结构和模式 学习如何做出最优的决策
目标函数 最大化或最小化某个目标函数 最大化累积奖励
训练数据 静态 由智能体与环境交互产生
途径 通过优化目标函数来学习模型参数 通过试错来学习最优策略

通俗的说,监督学习就是,人类这个老师通过自己大量的事例经验,强制让机器这个懵懂的孩子,去学会判别什么是黑,什么是白,哪个是猪,哪个是狗;而在非监督学习情境下,这里没有是非对错,机器运用人类给定的方法,在不断学习的过程,去发现它能看得到的这小小世界的规律;而强化学习就是人类这个老师,在机器这个小孩横冲直撞时,于特定的时间给予它一些奖励或者惩罚,从而引导它在面对分岔路口时,学会自己做出判断,朝着能够获得最多奖励的方向前进。而这个方向是人类希望它走的方向。

三、 什么是深度学习?

深度学习是机器学习的一个子集。您可以将其视为机器学习甚至更深入的机器学习的演变。

深度学习模型旨在模拟人类做出决策和得出结论的逻辑结构,以此分析数据。这些模型是根据人脑建模的,它们使数据能够在模仿神经元的节点之间传递。深度学习模型将算法分层以创建可以自行学习和做出决策的人工神经网络(ANN)。这种设计使深度学习模型比传统机器学习模型更强大。

深度学习系统需要建立在学习大型数据集基础之上。如果系统成功建立,一旦输入数据,它们就可以立即产生结果。一旦设置完毕,人工干预的需要就非常低。深度学习领域的一个重要进步称为迁移学习(transfer learning),它涉及预训练模型的使用。这些预训练模型有助于满足对大型训练数据集的需求。

与神经网络相关的深度学习,之所以用“深度”描述,主要是看神经网络的层数,1-2层叫做浅层神经网络,超过5层叫做深层神经网络,又叫做“深度学习”。<.mark>

四、机器学习和深度学习的区别

人工智能、机器学习与深度学习之间的关系,数字图像序列中的微小目标识别方法,人工智能,机器学习,深度学习

图2. 机器学习与深度学习的关系

1. 传统机器学习与深度学习数据处理过程:

传统机器学习特征是清晰的,深度学习内部特征是黑盒

人工智能、机器学习与深度学习之间的关系,数字图像序列中的微小目标识别方法,人工智能,机器学习,深度学习

图3. 传统机器学习与深度学习数据处理流程图

2. 传统机器学习和深度学习的效果性能

在训练数据规模比较小的情况下,传统机器学习型算法表现还可以,但是数据增加了,传统机器学习效果没有增加,会有一个临界点;但是对于深度学习来说,数据越多,效果越好。

人工智能、机器学习与深度学习之间的关系,数字图像序列中的微小目标识别方法,人工智能,机器学习,深度学习

图4. 传统机器学习与深度学习效果性能对比图

3. 传统机器学习与深度学习对硬件要求

传统机器学习在训练的时候,基本可以使用传统CPU运算就可以了。但是在深度学习方面,因为神经网络层数多,计算量大,一般都需要使用 GPU或AI计算芯片(AI卡)进行运算才行,这个也就是我们常说的“算力”。

深度学习在大规模数据计算方面算力消耗成本惊人,以ChatGPT为例,传闻大概运算花费了英伟达(NVIDIA)的A100型号GPU一万张,目前京东A100的卡销售价格大约为人民币10万元,ChatGPT大概训练算力成本粗略预估为10亿人民币,对于ChatGPT公布的数据来看,一次大模型的训练大约需要1200万美元,所以除了比拼算法,算力更是很重要的决定性因素。文章来源地址https://www.toymoban.com/news/detail-799419.html

到了这里,关于人工智能、机器学习与深度学习之间的关系的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据、人工智能、机器学习、深度学习关系联系前言

    1.大数据和人工智能关系 2.机器学习、深度学习、人工智能关系 3.监督学习、无监督学习、半监督学习、强化学习、迁移学习关系 4.机器学习具体内容 1.数据驱动的人工智能 :人工智能系统需要大量的数据来进行训练和学习。大数据提供了海量的信息,可以用于训练机器学习

    2024年02月12日
    浏览(62)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(91)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(56)
  • 一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(53)
  • 机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(61)
  • AI概念之人工智能、机器学习和数据挖掘之间的联系与区别

    本文深入探讨人工智能、机器学习和数据挖掘之间的联系与区别,涵盖基础知识、工作流程、需求分析、设计方案、实现步骤、代码示例、技巧与实践、常见问题与解答等内容,旨在帮助读者全面了解这三者之间的异同,并学会如何在实际工作中运用它们。 阅读时长:约30分

    2024年03月12日
    浏览(80)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(69)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(91)
  • 机器学习、深度学习、人工智能的区别与联系

    大家好,如果没有接触过机器学习,往往对机器学习、深度学习、甚至是人工智能有着模糊的概念。在进行深度的对比人工智能、机器学习和深度学习之后,有助于大家理清概念、选择适当技术,并建立起整个学科的框架,进而可以开展相关目标的学习。 本文将从下面几方面

    2024年01月22日
    浏览(69)
  • 带你搞懂人工智能、机器学习和深度学习!

    不少高校的小伙伴找我聊入门人工智能该怎么起步,如何快速入门,多长时间能成长为中高级工程师(聊下来感觉大多数学生党就是焦虑,毕业即失业,尤其现在就业环境这么差),但聊到最后,很多小朋友连人工智能和机器学习、深度学习的关系都搞不清楚。 今天更文给大

    2024年02月02日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包