Python高级数据结构——树(Tree)

这篇具有很好参考价值的文章主要介绍了Python高级数据结构——树(Tree)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python中的树(Tree):高级数据结构解析

树是一种非常重要且常用的数据结构,它的层次结构使得在其中存储和检索数据变得高效。在本文中,我们将深入讲解Python中的树,包括树的基本概念、表示方法、常见类型、遍历算法以及实际应用。我们将通过代码示例演示树的操作和应用。

基本概念

树是由节点和边组成的层次结构。树的基本概念包括:

  1. 节点(Node): 树中的基本元素,包含一个数据元素以及指向它的子节点的引用。
  2. 根节点(Root): 树的顶端节点,是整个树的起始点。
  3. 叶子节点(Leaf): 没有子节点的节点,位于树的末端。
  4. 父节点(Parent): 有子节点的节点。
  5. 子节点(Child): 由父节点指向的节点。
  6. 深度(Depth): 节点所在的层数,根节点深度为0。
  7. 高度(Height): 树的最大深度。
    根据节点的子节点数量,树可以分为二叉树、三叉树等。

树的表示方法

在Python中,树可以使用多种方式表示,其中两种常见的表示方法是节点类和字典。

节点类表示

使用类表示树的节点,每个节点包含数据、左子节点和右子节点。

class TreeNode:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

# 示例
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
字典表示

使用字典表示树的层次结构,每个节点的键是节点的数据,值是其子节点的字典。

tree_dict = {
    1: {
        2: {
            4: {},
            5: {},
        },
        3: {},
    }
}

常见类型的树

二叉树

二叉树是每个节点最多有两个子节点的树,包括二叉搜索树、平衡二叉树等。

class BinaryTreeNode:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
二叉搜索树

二叉搜索树(Binary Search Tree,BST)是一种有序的二叉树,对于每个节点,其左子树的所有节点值都小于该节点值,右子树的所有节点值都大于该节点值。

class BSTNode:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None

# 示例
root = BSTNode(8)
root.left = BSTNode(3)
root.right = BSTNode(10)
root.left.left = BSTNode(1)
root.left.right = BSTNode(6)
平衡二叉树

平衡二叉树是一种特殊的二叉搜索树,其左右子树的高度差不超过1。

字典树(Trie)

字典树是一种多叉树结构,用于存储动态集合或关联数组,通常用于字符串的检索。

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end_of_word = False

# 示例
root = TrieNode()
root.children['a'] = TrieNode()
root.children['b'] = TrieNode()
root.children['a'].children['n'] = TrieNode()
root.children['a'].children['n'].is_end_of_word = True

树的遍历算法

树的遍历是按照一定规则依次访问树的所有节点,主要有前序遍历、中序遍历和后序遍历。

前序遍历

前序遍历按照根节点、左子树、右子树的顺序进行遍历。

def pre_order_traversal(node):
    if node:
        print(node.data, end=" ")
        pre_order_traversal(node.left)
        pre_order_traversal(node.right)

# 示例
pre_order_traversal(root)
中序遍历

中序遍历按照左子树、根节点、右子树的顺序进行遍历。

def in_order_traversal(node):
    if node:
        in_order_traversal(node.left)
        print(node.data, end=" ")
        in_order_traversal(node.right)

# 示例
in_order_traversal(root)
后序遍历

后序遍历按照左子树、右子树、根节点的顺序进行遍历。

def post_order_traversal(node):
    if node:
        post_order_traversal(node.left)
        post_order_traversal(node.right)
        print(node.data, end=" ")

# 示例
post_order_traversal(root)

实际应用

树的应用非常广泛,其中一些常见的应用包括:

  1. 文件系统: 文件和目录的层次结构可以表示为树。
  2. 数据库索引: 数据库中的索引结构通常采用B树或B+树。
  3. 表达式树: 将数学表达式表示为树结构,方便计算和优化。
  4. 解析树: 用于解析语法结构,如编译器中的语法树。
    通过理解树的基本概念、表示方法、常见类型和遍历算法,您将能够更好地应用树结构在实际问题中。在Python中,使用节点类或字典来表示树的结构,同时使用递归实现树的遍历算法,是处理树结构的常用方式。

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:链接文章来源地址https://www.toymoban.com/news/detail-799449.html

到了这里,关于Python高级数据结构——树(Tree)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构:树(Tree)

    树是一种非线性结构,他是由n(n=0)个有限结点组成的一个具有层次关系的集合。 当n=0时,该树为空树。 在任意一个非空树中都满足以下条件: 1、有一个特殊的结点,称为根结点,根结点没有前驱结点 2、当n1时,其他结点可分为M(M0)个互不相交的有限集T1,T2,T3.……、

    2024年01月16日
    浏览(39)
  • 常见的数据结构:树Tree

    目录 1.概念 1.1 满二叉树 1.2 完全二叉树  1.3 平衡二叉树  2.遍历方式 2.1 先序遍历 2.2 中序遍历 2.3 后序遍历 2.4 层序遍历 原理:一种特殊的数据结构,每个节点有零个或多个子节点;没有父节点的节点称为根节点;每一个非根节点有且只有一个父节点;除了根节点外,每个子

    2024年02月13日
    浏览(43)
  • B_Tree 的数据结构

    头文件(结构体定义与函数声明): 函数实现 (需要在源文件即后缀为.c的文件中实现,否则编译器会报错,重复定义函数): 最后在main源文件中只需要包含该头文件即可使用定义的抽象数据类型: 这里没有提供具体样例,可根据实际情况自行编写。

    2024年01月17日
    浏览(35)
  • 【数据结构基础】树 - 前缀树(Trie Tree)

    Trie,又称字典树、单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的

    2024年02月07日
    浏览(40)
  • 022:vue中tree结构数据变成扁平化table结构数据的示例

    第022个 查看专栏目录: VUE ------ element UI 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使用,computed,watch,生命周期(beforeCreate,created,beforeMount,mounted, beforeUpdate,upda

    2024年02月12日
    浏览(39)
  • Java学数据结构(2)——树Tree & 二叉树binary tree & 二叉查找树 & AVL树 & 树的遍历

    1.树的出现:解决链表线性访问时间太慢,树的时间复杂度O(logN); 2.二叉树的定义,最多两个儿子节点; 3.二叉查找树,左小,右大,中居中;remove方法,两种,只有一个儿子节点,有两个儿子节点; 4.AVL树,在二叉查找树基础上加平衡条件,旋转方法,单旋转,双旋转;

    2024年02月10日
    浏览(49)
  • Java 【数据结构】 二叉树(Binary_Tree)【神装】

        登神长阶  第五神装 二叉树 Binary-Tree 目录  🎷一.树形结构 🪗1.概念 🎸2.具体应用 🎹 二.二叉树(Binary Tree) 🎺1.概念  🎻2.表现形式 🪕3.特殊类型 🥁3.1完全二叉树(Complete Binary Tree) 🪘3.2满二叉树(Full Binary Tree) 🔋4.性质  🪫5.二叉树的遍历 💿5.1前中后序遍历

    2024年04月27日
    浏览(44)
  • 红黑树下岗,内核新数据结构上场:maple tree!

      在外界看来,Linux 内核的内部似乎变化很少,尤其是像内存管理子系统(memory-management subsystem)这样的子系统。然而,开发人员时常需要更换内部接口来解决某些长期存在的问题。比如,其中一个问题就是用来保护内存管理里的重要结构的锁的竞争问题,这些重要结构是指

    2024年02月04日
    浏览(46)
  • Element-UI控件Tree实现数据树形结构

            在前端开发中,有时会遇到所有菜单数据在同一级的情况,后端未对数据进行分级处理;但前端渲染需要是树状结构的数据,如何实现数据的树状化?将数组中通过父节点的ID与子节点的parentId关联,通过递归函数来实现。         前端框架这里使用element-ui的tree控件

    2024年02月05日
    浏览(103)
  • 【大数据存储引擎】LSM-Tree 日志结构合并树 (Log-Structured Merge Tree) 极简教程

      目录 LSM-Tree :日志结构合并树 简介 RocksDB 架构 Motivation behind LSM TreesLSM 树背后的动机

    2023年04月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包