MySQL 全文索引触发 OOM 一例

这篇具有很好参考价值的文章主要介绍了MySQL 全文索引触发 OOM 一例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

业务监控告警内存不足,笔者进行了全面系统的故障分析并给出解决方案。

作者:付祥,现居珠海,主要负责 Oracle、MySQL、mongoDB 和 Redis 维护工作。

爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。

本文约 1700 字,预计阅读需要 6 分钟。

MySQL 版本 5.7.34

故障现象

某业务监控报警内存不足,发现 mysqld 进程由于内存不足被 kill 自动重启了。

[root@xxxxxx ~]# ps -ef|grep mysqld
root     17117 62542  0 20:26 pts/1    00:00:00 grep --color=auto mysqld
mysql    27799     1  7 09:54 ?        00:48:32 /usr/sbin/mysqld --daemonize --pid-file=/var/run/mysqld/mysqld.pid
[root@xxxxxx ~]#

# 操作系统日志记录 MySQL 被 OOM
Dec  8 09:54:42 xxxxxx kernel: Out of memory: Kill process 22554 (mysqld) score 934 or sacrifice child
Dec  8 09:54:42 xxxxxx kernel: Killed process 22554 (mysqld), UID 27, total-vm:11223284kB, anon-rss:7444620kB, file-rss:0kB, shmem-rss:0kB

故障分析

机器总内存 8G,还有其他应用占用了少许内存。尽管 MySQL 重启了,使用内存依然很高,内存监控数据如下:

MySQL 全文索引触发 OOM 一例,mysql

有效内存并不是一点一点的减少,而是突然下降的。内存监控数据是 5 分钟采集一次,MySQL 在 09:54 重启后,09:55:54 采样有效内存是 2869899264 字节,10:00:54 采集降低至 56885248 字节

2023-12-08 10:20:54    
963796992
2023-12-08 10:15:54    
93224960
2023-12-08 10:10:54    
111407104
2023-12-08 10:05:54    
113987584
2023-12-08 10:00:54    
56885248
2023-12-08 09:55:54    
2869899264

InnoDB Buffer 分配的内存为 1G:

| innodb_buffer_pool_size   | 1073741824     |

top 查看 MySQL 当前使用了 6GB 内存:

27799 mysql     20   0 8888376   6.1g   6120 S  26.2 80.5  30:19.01 mysqld

通过 gdb 调用 malloc_stats() 函数查看内存分配情况:

gdb -ex "call (void) malloc_stats()" --batch -p $(pidof mysqld)

查看 MySQL 日志:

MALLOC:      853070392 (  813.6 MiB) Bytes in use by application
MALLOC: +   6369394688 ( 6074.3 MiB) Bytes in page heap freelist
MALLOC: +      9771872 (    9.3 MiB) Bytes in central cache freelist
MALLOC: +       863232 (    0.8 MiB) Bytes in transfer cache freelist
MALLOC: +     25216616 (   24.0 MiB) Bytes in thread cache freelists
MALLOC: +     25559040 (   24.4 MiB) Bytes in malloc metadata
MALLOC:   ------------
MALLOC: =   7283875840 ( 6946.4 MiB) Actual memory used (physical + swap)
MALLOC: +    329924608 (  314.6 MiB) Bytes released to OS (aka unmapped)
MALLOC:   ------------
MALLOC: =   7613800448 ( 7261.1 MiB) Virtual address space used
MALLOC:
MALLOC:          12564              Spans in use
MALLOC:             52              Thread heaps in use
MALLOC:           8192              Tcmalloc page size
------------------------------------------------
Call ReleaseFreeMemory() to release freelist memory to the OS (via madvise()).
Bytes released to the OS take up virtual address space but no physical memory.

MySQL 当前使用 Tcmalloc 内存分配器,Bytes in page heap freelist 使用了将近 6GB 内存,猜测是有什么操作比较吃内存,操作完后 MySQL 释放了内存。但是 Tcmalloc 并没有将内存释放给操作系统,那到底是什么操作比较吃内存呢?分析相关时间段慢 SQL,发现有一个使用全文索引 SQL 比较可疑:

# Time: 2023-12-08T01:52:23.084854Z
# User@Host: xxxxxx @  [x.x.x.x]  Id: 259892877
# Query_time: 1.436714  Lock_time: 0.000049 Rows_sent: 1  Rows_examined: 0
SET timestamp=1702000343;
SELECT count(*) FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in 1 state\"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status in ('pending','processing','completed')) AND `xx`.`sub_type` = 1;
# Time: 2023-12-08T01:52:24.540847Z
# User@Host: xxxxxx @  [x.x.x.x]  Id: 259892879
# Query_time: 1.454352  Lock_time: 0.000052 Rows_sent: 0  Rows_examined: 0
SET timestamp=1702000344;
SELECT xx.*,SUBSTRING(xx.content, 1, 1024) as content,SUBSTRING(xx.sub_content, 1, 1024) as sub_content FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in 1 state\"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status in ('pending','processing','completed')) AND `xx`.`sub_type` = 1 ORDER BY xx.sub_time DESC LIMIT 50;
# Time: 2023-12-08T01:53:26.546353Z
# User@Host: xxxxxx @  [x.x.x.x]  Id: 259893335
# Query_time: 44.198100  Lock_time: 0.000041 Rows_sent: 1  Rows_examined: 48
SET timestamp=1702000406;
SELECT count(*) FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in \"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status in ('pending','processing','completed')) AND `xx`.`sub_type` = 1;
73 
# Time: 2023-12-08T01:56:35.790820Z
# User@Host: xxxxxx @  [x.x.x.x]  Id:  1671
# Query_time: 29.259303  Lock_time: 0.000042 Rows_sent: 1  Rows_examined: 48
SET timestamp=1702000595;
SELECT count(*) FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in \"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status = 'pending') AND `xx`.`sub_type` = 1;
# Time: 2023-12-08T01:56:36.350983Z
# User@Host: xxxxxx @  [x.x.x.x]  Id:  1672
# Query_time: 28.870504  Lock_time: 0.000050 Rows_sent: 1  Rows_examined: 48
SET timestamp=1702000596;
SELECT count(*) FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in \"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status in ('pending','processing','completed')) AND `xx`.`sub_type` = 1;

表结构及数据量如下:

root@3306 xxxxxx> show create table xx_content\G
*************************** 1. row ***************************
       Table: xx_content
Create Table: CREATE TABLE `xx_content` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `content` longtext,
  PRIMARY KEY (`id`),
  FULLTEXT KEY `ngram_content` (`content`) /*!50100 WITH PARSER `ngram` */ 
) ENGINE=InnoDB AUTO_INCREMENT=100377976 DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec)

root@3306 xxxxxx> select count(*) from xx_content;
+----------+
| count(*) |
+----------+
|   360215 |
+----------+
1 row in set (0.11 sec)

全文索引相关参数均采用默认配置:

root@3306 (none)> show variables like '%ft%';
+---------------------------------+----------------+
| Variable_name                   | Value          |
+---------------------------------+----------------+
| ft_boolean_syntax               | + -><()~*:""&| |
| ft_max_word_len                 | 84             |
| ft_min_word_len                 | 4              |
| ft_query_expansion_limit        | 20             |
| ft_stopword_file                | (built-in)     |
| innodb_ft_aux_table             |                |
| innodb_ft_cache_size            | 8000000        |
| innodb_ft_enable_diag_print     | OFF            |
| innodb_ft_enable_stopword       | ON             |
| innodb_ft_max_token_size        | 84             |
| innodb_ft_min_token_size        | 3              |
| innodb_ft_num_word_optimize     | 2000           |
| innodb_ft_result_cache_limit    | 2000000000     |
| innodb_ft_server_stopword_table |                |
| innodb_ft_sort_pll_degree       | 2              |
| innodb_ft_total_cache_size      | 640000000      |
| innodb_ft_user_stopword_table   |                |
+---------------------------------+----------------+
17 rows in set (0.01 sec)

SQL 分别在 9:53 和 9:56 执行,正好在 MySQL 自动重启前后,和内存监控数据比较吻合(9:53 执行,9:54 机器内存不足 MySQL 被 OOM;9:56 执行后,10:00:54 采集降低至 56885248 字节)。这个环境还有一个从库,从库未承载业务,将 SQL 拿到从库执行,观察 MySQL 内存使用变化,开 2 个窗口,1 个窗口执行 SQL:

root@3306 xxxxxx> SELECT count(*) FROM `xx` inner JOIN (select id from xx_content  where  MATCH(content) AGAINST('\"Elasticsearch Cluster in 1 state\"' IN BOOLEAN MODE)) al ON xx.id = al.id WHERE (xx.handle_status in ('pending','processing','completed')) AND `xx`.`sub_type` = 1;
+----------+
| count(*) |
+----------+
|        3 |
+----------+
1 row in set (1 min 9.31 sec)

另一个窗口观察 mysqld 进程内存使用情况:

[root@xxxxxx ~]# ps aux|grep mysqld|grep -v grep|awk '{print $6}'
3453980
[root@xxxxxx ~]# while true;do ps aux|grep mysqld|grep -v grep|awk '{print $6}';sleep 1;done;
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3453980
3459064
3617600
3822828
3969212
4128056
4533612
4677028
4756868
4844452
5011176
5070292
5123844
5188556
5263880
5410368
5410368
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200
5412200

可以观察到 SQL 执行过程中,内存不断上涨,SQL 执行完后内存从 3453980 KB 涨到 5412200KB,但是 Tcmalloc 并没有将内存释放给操作系统。

到目前为止,总算定位到了问题,MySQL 并不擅长全文索引,可以交给 ElasticSearch 等数据库去做,那在业务不调整情况下,怎么解决问题呢?不妨换 Jemalloc 内存分配器试试:

[root@xxxxxx ~]# yum install -y jemalloc
[root@xxxxxx ~]# cat /etc/sysconfig/mysql
#LD_PRELOAD=/usr/lib64/libtcmalloc.so
LD_PRELOAD=/usr/lib64/libjemalloc.so.1
[root@xxxxxx ~]# systemctl restart mysqld

果然有惊喜,SQL 执行完后会释放内存,从 822948KB 涨到 2738040KB,最终回落到 916400KB:

[root@xxxxxx ~]# while true;do ps aux|grep mysqld|grep -v grep|awk '{print $6}';sleep 1;done;
822948
822948
822948
822948
822948
822948
822948
822948
822948
822948
822948
822948
822948
822948
874216
1057240
1273684
1443820
1662924
1873304
2177760
2502488
2738040
1296604
899580
900636
902412
903680
904384
......
914492
914492
915020
915284
915736
916524
916524
916524
916524
916524
916400
916400
916400
916400
916400
916400
916400
916400
916400

总结

线上 MySQL 都是使用 Tcmalloc 内存分配器一直很稳定,并未出现服务器内存不足问题。本次出现服务器内存不足,是因为使用了全文索引这种极少使用的场景触发,换成 Jemalloc 后,内存使用整体上得到了控制。

更多技术文章,请访问:https://opensource.actionsky.com/

关于 SQLE

SQLE 是一款全方位的 SQL 质量管理平台,覆盖开发至生产环境的 SQL 审核和管理。支持主流的开源、商业、国产数据库,为开发和运维提供流程自动化能力,提升上线效率,提高数据质量。文章来源地址https://www.toymoban.com/news/detail-799622.html

SQLE 获取

类型 地址
版本库 https://github.com/actiontech/sqle
文档 https://actiontech.github.io/sqle-docs/
发布信息 https://github.com/actiontech/sqle/releases
数据审核插件开发文档 https://actiontech.github.io/sqle-docs/docs/dev-manual/plugins/howtouse

到了这里,关于MySQL 全文索引触发 OOM 一例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MYSQL全文索引及Match() against()踩坑记录-超详细超实用

    场景一 当我们使用mysql模糊查询时,经常会遇到如下情况: 如果我们customer_manager_no字段是可能会存多个值,用逗号隔开这种;当我们想查找出customer_manager_no字段包含:\\\'wgx2’的数据,可能我们会直接想到如下写法: 但这样肯定不正确;字段包含:‘wgx22’的数据也出来了;

    2024年02月02日
    浏览(35)
  • MySQL高级篇复盘笔记(一)【存储引擎、索引、SQL优化、视图、触发器、MySQL管理】

    ❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于 Java后端开发 ,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得 关注 、 点赞 、 收藏 、 评论 ⭐️⭐️⭐️ 📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉 连接层

    2024年02月06日
    浏览(78)
  • 优化 - 重构一次Mysql导致服务器的OOM

    优化了一次前后端处理不当导致的CPU的一次爆机行为,当然,这和服务器的配置低也有着密不可分的关系,简单的逻辑学告诉我们,要找到真正的问题,进行解决,CPU爆机的关键点在于前后端两个方面,下面针对具体的问题,进行分析和解决。 定位问题 看监控的图表,CPU已

    2024年01月21日
    浏览(74)
  • MySQL中文全文检索

    常规数据库搜索都是用 like 语句,但是like 语句是不能利用索引的,查询效率极其低下。这也就是为什么很多功能都只提供标题搜索的原因,因为如果搜索内容,几万数据就跑不动了。 Mysql 全文索引是专门为了解决模糊查询提供的,可以对整篇文章预先按照词进行索引,搜索

    2024年02月14日
    浏览(47)
  • MySQL 全文检索

    不是所有的数据表都支持全文检索 MySQL支持多种底层数据库引擎,但是并非所有的引擎支持全文检索 ,目前最常用引擎是是MyISAM和InnoDB;前者支持全文检索,后者不支持。 操作符 含义 + 必须有 - 必须不包含 包含对应的排名靠前 包含对应的排名靠后 ~ 取反()

    2024年04月15日
    浏览(39)
  • MySQL 中文全文检索

    创建索引(MySQL 5.7.6后全文件索引可用WITH PARSER ngram,针对中文,日文,韩文) 查询方法 注意 只能在类型为CHAR、VARCHAR或者TEXT的字段上创建全文索引。 全文索引只支持InnoDB和MyISAM引擎。 MATCH()函数使用的字段名,必须要与创建全文索引时指定的字段名一致。 多个字段索引,

    2024年02月12日
    浏览(50)
  • MySQL——全文检索

    不是所有的数据表都支持全文检索 MySQL支持多种底层数据库引擎,但是并非所有的引擎支持全文检索 ,目前最常用引擎是是MyISAM和InnoDB;前者支持全文检索,后者不支持。 表productnotes : 1. 查询包含 rabbit 的行,并按照相关性排序  2.显示每一条的相关性值 3.有heavy 但是没有

    2024年04月15日
    浏览(46)
  • mysql全文检索使用

    数据库数据量10万左右,使用like \\\'%test%\\\'要耗费30秒左右,放弃该办法 使用mysql的全文检索 第一步:建立索引 首先修改一下设置: my.ini中ngram_token_size = 1 可以通过    show variables like \\\'%token%\\\';来查看 接下来建立索引:alter  table 表名 add fulltext titlefull (字段名) with parser ngram; 第二步

    2024年02月12日
    浏览(41)
  • 【MySQL】不允许你不会全文本搜索

    🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📆 未来很长,值得我们全力奔赴更美好的生活✨ 😁大家好呀,今天是我第N次写MySQL,也是最近才学习MySQL,也想着记录一

    2024年02月16日
    浏览(43)
  • Mysql 简单实现全文检索(FULLTEXT)

    版本支持 MySQL 5.6 以前的版本,只有 MyISAM 存储引擎支持全文索引; MySQL 5.6 及以后的版本,MyISAM 和 InnoDB 存储引擎均支持全文索引; 只有字段的数据类型为 char、varchar、text 及其系列才可以建全文索引。 按顺序操做: 1.修改数据库配置 etc/my.cnf 文件 [mysqld] 下面加入 ngram_token_s

    2024年02月09日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包