自抗扰(ADRC)控制原理及控制器设计

这篇具有很好参考价值的文章主要介绍了自抗扰(ADRC)控制原理及控制器设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

自抗扰控制是在PID控制算法基础上进行改进的新型控制方法,它具有不依赖于控制对象模型、不区分系统内外扰的结构特点。常用的自抗扰控制器主要由跟踪微分器(Tracking Differentiator,TD)、扩张状态观测器(Extended State Observer,ESO)和非线性状态误差反馈控制率(Nonlinear State Error Feedback,NLSEF)三部分组成。

跟踪微分器的作用是针对被控对象的输入特点对其提取所需要的信号。

扩张状态观测器作为自抗扰控制的核心组成部分,一方面可以对系统中重要的状态变量进行跟踪,便于实时了解系统状态;另一方面还能根据系统模型内外扰动的总体作用量,以反馈的形式对其加以及时补偿,有助于提高系统鲁棒性。

非线性状态误差反馈控制率是一种非线性的组合方式,输入是TD输出的状态变量与ESO状态估计值之间的误差,输出结合ESO的总扰动补偿值得到控制器的控制量。


这里以二阶系统为例详细介绍自抗扰控制器各部分的设计方法。

跟踪微分器(TD)

经典微分器的形式为:

adrc控制,控制理论,算法,算法,学习

文章来源地址https://www.toymoban.com/news/detail-799742.html

式中,分别是系统的输入、输出信号。当对信号叠加随机噪声时

adrc控制,控制理论,算法,算法,学习

越小时,系统输出的“噪声放大”就越严重。

设二阶系统为:

         

上式的“快速最优控制”系统为:  

adrc控制,控制理论,算法,算法,学习

直接用跟踪微分器来进行计算,项会使系统在进入“稳态”时易产生“高频颤振”。因此,考虑“跟踪微分器”的离散形式。

adrc控制,控制理论,算法,算法,学习

对上式求“快速控制最优综合函数”,得

adrc控制,控制理论,算法,算法,学习

式中,称作“速度因子”,与跟踪速度有关,越大,跟踪速度越快;为积分步长。

得到离散系统

adrc控制,控制理论,算法,算法,学习

其中为“滤波因子”,主要对噪声起滤波作用,取适当大于积分步长的参数,可消除速度曲线进入稳态时刻的超调现象。

扩张状态观测器(ESO)

考虑系统

大多数情况下,未知,这时可将其当作扰动,用“非光滑反馈”等效其作用。

令,,则也是未知函数,于是有

adrc控制,控制理论,算法,算法,学习

若系统“内扰”和“外扰”的总和,即“总扰动”adrc控制,控制理论,算法,算法,学习,其中已知,,则有

adrc控制,控制理论,算法,算法,学习

系统被“线性化”成双积分装置,即不确定系统的“实时动态线性化”。

非线性PID

把经典PID的“加权和”改成“非线性组合”而得“非线性PID”。一种可用的“非线性组合”形式为:

当时,函数具有“小误差,大增益”;“大误差,小增益”的特性。

设“非线性PID”输入为,,,则可采用合适的控制律:

adrc控制,控制理论,算法,算法,学习

设计参数时,常令。

ADRC整体结构

ADRC控制器结构如图所示。自抗扰的根本在于使用补偿项将系统“不确定模型”和“未知外扰”的总和作用共同作为总扰动进行观测和补偿。

adrc控制,控制理论,算法,算法,学习

其中,为目标速度,为实际速度,为跟踪速度,为跟踪加速度,为观测速度,为观测加速度,为观测扰动。

 自抗扰控制器算法:

被控对象:

adrc控制,控制理论,算法,算法,学习

安排过渡过程(TD)为设定值

adrc控制,控制理论,算法,算法,学习

估计状态和总扰动(ESO)

adrc控制,控制理论,算法,算法,学习

控制量的形成

adrc控制,控制理论,算法,算法,学习

式中,

到了这里,关于自抗扰(ADRC)控制原理及控制器设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 混合式步进电机控制器开源系列(一)PCB原理图设计

    本系列文章仅针对淘宝店铺“三三智控”开发板产品作开发说明 参考资料由“三三智控”提供且已获得店铺授权使用 开源让世界更美好 本设计通过对上述开发板进行功能裁剪以及完善应用于具体场景中。 文章开源资料将同步上传至Github仓库: 👺https://github.com/NonnettaWu/TMC

    2024年02月08日
    浏览(94)
  • 微机原理与接口技术 8255和8253综合应用之交通灯控制器的设计

    交通灯控制器的设计 一、实验要求 通过采用并行口8255A和定时器/计数器8253编写一模仿交通灯程序,在微机原理实验仪上调试,运行后可以看到LED灯在不停的红绿交替亮。 二、实验目的: 熟悉和掌握并行口8255A和定时器/计数器8253的初始化和综合使用。 三、实验电路及连接图

    2024年02月12日
    浏览(45)
  • 【毕业设计】42基于FPGA的LCD1602控制器设计仿真与实现(原理图+仿真+源代码+论文)

    包含此题目毕业设计全套资料: 原理图工程文件 仿真工程文件 源代码 仿真截图 低重复率论文,字数:19964 基于altera 公司cyclone4代芯片的fpga以及quartusII软件设计一款屏幕显示系统,显示装置可以选择点阵或字符型液晶,最终实现滚动显示、可控制滚动方向、暂停、清屏等功能

    2024年02月04日
    浏览(93)
  • 9-基于STM32无刷直流电机控制器的设计仿真与实现(原理图+源码+仿真工程+论文+PPT+参考英文文献)

    包含此题目毕业设计全套资料: 原理图工程文件 原理图截图 仿真模型工程文件 仿真截图 低重复率文档(22642字) 英文文献及翻译 资料链接 1.基于单片机实现无刷直流电机控制器的设计,完成系统芯片选型; 2.确定无刷直流电机控制器的总体设计方案; 3.给出系统的硬件设计

    2024年02月07日
    浏览(55)
  • 计算机组成原理32位MIPS CPU设计实验(指令译码器电路设计 、时序发生器状态机设计、时序发生器输出函数、硬布线控制器)

    这次实验是32位MIPS CPU设计实验(单总线CPU-定长指令周期-3级时序),在头歌当中一共需要我们进行六道题的测试,分别为MIPS指令译码器设计,定长指令周期(时序发生FSM设计,时序发生器输出函数设计,硬布线控制器,单总线CPU设计),硬布线控制器组合逻辑单元。其中由于

    2024年02月02日
    浏览(42)
  • k8s 控制器StatefulSet原理解析

    🐇明明跟你说过:个人主页 🏅个人专栏:《Kubernetes航线图:从船长到K8s掌舵者》 🏅 🔖行路有良友,便是天堂🔖 目录 一、前言 1、k8s概述 2、有状态服务和无状态服务  二、StatefulSet基本概念 1、StatefulSet特性  2、StatefulSet与Deployment、DaemonSet的对比  三、StatefulSet核心组件

    2024年04月17日
    浏览(54)
  • 【计算机组成原理与体系结构】控制器

    目录 一、CPU的功能与基本结构 二、指令周期的数据流 三、数据通路 四、时序控制 CPU的功能: 指令控制 :完成取指令、分析指令和执行指令的操作,即程序的顺序控制。 操作控制 :一条指令的功能往往是由若干操作信号的组合来实现的,CPU管理并产生由内存取出的每条指

    2024年02月08日
    浏览(47)
  • 计算机组成原理实验四 微程序控制器实验报告

    我班算是几乎最后一个做实验的班级了,报告参考了一些朋友提供的数据加上一些自己的主观拙见,本人水平有限加之制作仓促难免有错误,望大家批评指正。  (1) 掌握微程序控制器的组成原理。 (2) 掌握微程序的编制、写入,观察微程序的运行过程。 (3) 基于数据通路图,

    2024年02月06日
    浏览(40)
  • 【设计模式】前端控制器模式

    前端控制器模式(Front Controller Pattern)是用来提供一个集中的请求处理机制,所有的请求都将由一个单一的处理程序处理。该处理程序可以做认证/授权/记录日志,或者跟踪请求,然后把请求传给相应的处理程序。以下是这种设计模式的实体。 前端控制器(Front Controller)  

    2024年02月13日
    浏览(48)
  • 数电实验4:彩灯控制器设计

    西南交大 数电实验 ————《数字电路与计算机组成原理》 巩固组合逻辑电路设计、仿真方法. 学习简单时序电路的设计与实验方法。 巩固 Verilog HDL 层次化文件设计。 用 Verilog HDL 以层次化的设计方法(电路结构参照图 1 所示的电路框图), 设计一个 6 进制计数器及合适的

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包