【动态规划】最长公共子序列(Java)

这篇具有很好参考价值的文章主要介绍了【动态规划】最长公共子序列(Java)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

问题介绍

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace” ,它的长度为 3 。

示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。

示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0 。

提示:
1 <= text1.length, text2.length <= 1000
text1 和 text2 仅由小写英文字符组成。

问题分析

text1 = “abcde”, text2 = “ace”
 动态规划先减少比较的字符,让两个字符串的字符进行一一比较,比如,当text1 = a,text2 = a时,相同子序列数量为1;当text1 = ab,text2 = a时,相同子序列数量为1。
按照这个思路,我们逐渐扩大问题,总可以比较两个字符串的末尾字符是否相等,如果相等,则在前一个最大相同子序列的基础上加1。
 定义 f[ i ][ j ]表示字符串text1的[1 , i ]区间和字符串text2的[1 , j ]区间的最长公共子序列长度(下标从1开始)。
 1、若两个字符串目前的最后一位相等,那么问题就转化成了字符串 text1 的[1 , j-1]区间和字符串 text2 的[1 , j-1]区间的最长公共子序列长度再加上一,即 f[ i ] [j ] = f [ i - 1][ j - 1] + 1。(下标从1开始)
 2、若最后一位不相等,那么字符串text1的[ 1, i ]区间和字符串text2的[ 1 , j ]区间的最长公共子序列长度无法延长,因此f [ i ] [ j ]就会继承f [ i -1][j]与f [ i ][ j - 1 ]中的较大值。之所以是较大值,则是题目本身要得到最长子序列决定的。
继续采用这个思路进行手动填表:

1 2 3 4 5
1 1 1 1 1 1
2 1 1 2 2 2
3 1 1 2 2 3

最终结果位于右下角。文章来源地址https://www.toymoban.com/news/detail-799999.html

代码

public class LongestCommonSubsequence{
    public static int longestCommonSubsequence(String text1, String text2) {
        int n = text1.length();
        int m =  text2.length();
        int[][] length = new int[n + 1][m + 1];
        for (int i = 1; i <= n; i ++) {
            char c = text1.charAt(i - 1);
            for (int j = 1; j <= m; j ++) {
                char c1 = text2.charAt(j - 1);
                if (c == c1) {
                    length[i][j] = length[i - 1][j - 1] + 1;
                } else {
                    length[i][j] = Math.max(length[i - 1][j], length[i][j - 1]);
                }
            }
        }
        return length[n][m];
    }

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        System.out.println("输入text1:");
        String text1 = in.next();
        System.out.println("输入text2:");
        String text2 = in.next();
        System.out.println(longestCommonSubsequence(text1,text2));
    }
}

到了这里,关于【动态规划】最长公共子序列(Java)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【动态规划】最长公共子序列——算法设计与分析

    子序列是给定序列中在任意位置去掉任意多个字符后得到的结果。例如: 给定序列 X X X : X : A B C B D A B X:ABCBDAB X : A BCB D A B X X X 的子序列: X 1 : A B C B D A B X_1:ABCBDAB X 1 ​ : A BCB D A B X 2 : A B C B X_2:ABCB X 2 ​ : A BCB X 3 : A C B B X_3:ACBB X 3 ​ : A CBB 给定两个序列

    2024年02月05日
    浏览(55)
  • 【算法(四·三):动态规划思想——最长公共子序列问题】

    最长公共子序列(Longest Common Subsequence,简称LCS)问题是一种常见的字符串处理问题。它的**目标是找到两个或多个字符串中的最长公共子序列,这个子序列不需要是连续的,但字符在原始字符串中的相对顺序必须保持一致。**例如,考虑两个字符串\\\"ABCD\\\"和\\\"ACDF\\\",它们的最长公

    2024年04月13日
    浏览(50)
  • 【算法】力扣【动态规划,LCS】1143. 最长公共子序列

    1143. 最长公共子序列 本文是对 LCS 这一 动态规划 模型的整理,以力扣平台上的算法题1143:最长公共子序列为模板题进行解析。 该题目要求计算两个字符串的最长公共子序列(Longest Common Subsequence,简称LCS)的长度。字符串的子序列是指在不改变字符顺序的情况下,通过删去

    2024年01月17日
    浏览(61)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(52)
  • 算法分析:C语言实现动态规划之最长公共子序列

    最长公共子序列问题:          下面的简单问题说明了动态规划的基本原理。在字母表一∑上,分别给出两个长度为n和m的字符串A和B,确定在A和B中最长公共子序列的长度。这里,A = a₁a₂...an。的子序列是一个形式为a₁ka₂k...aik的字符串,其中每个i都在1和n之间,并且

    2023年04月21日
    浏览(37)
  • 算法套路十五——动态规划求解最长公共子序列LCS

    给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

    2024年02月04日
    浏览(52)
  • 算法分析 | 动态规划算法设计之最长公共子序列 C语言版

    声明:凡代码问题,欢迎在评论区沟通。承蒙指正,一起成长! 目录 一、实验内容与要求  二、概要设计 三、直接上代码      四、输入数据及运行结果   内容:最长公共子序列 ·若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序

    2024年02月02日
    浏览(51)
  • 9.动态规划——4.最长公共子序列(动态规划类的算法题该如何解决?)

    设最长公共子序列 d p [ i ] [ j ] dp[i][j] d p [ i ] [ j ] 是 S 1 S_1 S 1 ​ 的前 i i i 个元素,是 S 2 S_2 S 2 ​ 的前 j j j 个元素,那么有: 若 S 1 [ i − 1 ] = = S 2 [ i − 1 ] S_1[i-1]==S_2[i-1] S 1 ​ [ i − 1 ] == S 2 ​ [ i − 1 ] ,那么 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j]=dp[i-1][j-1]+1 d p [

    2024年04月11日
    浏览(47)
  • 算法 DAY52 动态规划10 1143.最长公共子序列 1035.不相交的线 53. 最大子数组和

    本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了 1、dp数组 dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j] 2、递推公式 因为不强调是连续的,当前dp[i][j] 就有三种路径可以选:dp[i-1][j] dp[i][j-1]

    2024年02月03日
    浏览(65)
  • 动态规划——最长公共子序列

    先来讲解以下什么是最长公共子序列。最长公共子序列不是最长相同字符串,有点相似但不一样,来举个简单的例子,有字符串s1=bcdea,s2=abce,最长相同字符串是bc,最大公共部分是2;而最长公共子序列则是bce,最大公共部分是3。可以看出,公共子序列不需要连续相等,有相

    2023年04月19日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包