ImageNet Classification with Deep Convolutional 论文笔记

这篇具有很好参考价值的文章主要介绍了ImageNet Classification with Deep Convolutional 论文笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ImageNet Classification with Deep Convolutional 论文笔记,深度学习,论文笔记,论文阅读,人工智能,深度学习,神经网络,卷积神经网络

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。



标题和作者

ImageNet Classification with Deep Convolutional Neural Networks,意为使用深度卷积神经网络在 ImageNet 数据集上进行分类,发表于 2012 年。

作者信息:

  • Alex Krizhevsky,本文第一作者,本文提出的网络结构后被称为 AlexNet
  • Ilya Sutskever,本文第二作者,2015 年加入 OpenAI,成为 OpenAI 的联合创始人兼首席科学家。
  • Geoffrey E. Hinton,本文第三作者,2018 年图灵奖得主,神经网络之父,前两位作者的导师。

摘要

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called “dropout” that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

本文提出了一个大型深度卷积神经网络,该网络在 ImageNet LSVRC-2010 比赛任务(120 万张图片的 1000 分类任务)中,取得了 top-1 准确率 62.5%top-5 准确率 83.0% 的好成绩,超越了以往所有的 SOTA 方法。

该网络有 6000 万个参数和 65 万个神经元,由五个卷积层组成,其中一些后面跟着最大池化层,以及三个全连接层和一个最终的 1000 分类的 softmax 层。

为了使训练更快,作者使用 ReLU 作为激活函数(non-saturating neurons),并使用 GPU 加速卷积运算。

为了减少全连接层的过拟合,作者采用了一种新的正则化方法,即 Dropout,实验证明这一方法非常有效。

作者在 ILSVRC-2012 比赛中使用了这个模型的一个变体,并以 84.7% 的 top-5 准确率的好成绩赢得了比赛,该比赛第二名的 top-5 准确率仅为 73.8%

创新点

笔者认为的几个影响比较大的创新点:

  • 使用了 ReLU 作为激活函数,而非传统的 TanhSigmoid 函数。ReLU 未特别压缩输出值的范围(在文中被称为 non-saturating neurons),且运算简单。
  • 将卷积运算置于多 GPU 上进行,大大加快了训练速度(当时的企业普遍还在使用 CPU 或单 GPU 训练模型)。
  • 使用了 Dropout 正则化方法,降低了模型的过拟合风险。

ReLU

ReLU,即 Rectified Linear Unit,是一种激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)。相比传统的 TanhSigmoid 函数,ReLU 运算速度更快。

ImageNet Classification with Deep Convolutional 论文笔记,深度学习,论文笔记,论文阅读,人工智能,深度学习,神经网络,卷积神经网络

在一个 4 层的卷积网络中使用 ReLU 函数在 CIFAR-10 数据集上达到 25% 的训练错误率要比在相同网络相同条件下使用 Tanh 函数快 6 倍。

多 GPU

本文的模型使用两个 GTX 580 3GB GPU 进行训练。

Dropout

Dropout 是一种正则化方法,具体做法是在训练过程中,随机将一些神经元的输出置为 0。

笔者对 Dropout 的理解是:类似于 Bagging,每次的训练数据事实上仅经过了所有的非 Dropout 神经元和一部分 Dropout 神经元,相当于隐式地训练了 2 N 2^N 2N N N N 为 Dropout 神经元个数) 个子网络(尽管这些模型不是相互独立的),最终的输出是所有节点输出的综合值(也即最终网络是所有子网络的综合)。

其他

除此之外,本文还有一些其他的创新点,比如:

  • Local Response Normalization,即局部响应归一化,这是一种对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,这样可以使得模型对于输入的微小变化不敏感,从而提高模型的泛化能力。
  • Overlapping Pooling,即重叠池化,池化窗口大于步长,每次池化都有重叠部分,相比传统池化方法有更好效果,能够降低模型的过拟合风险。
  • 一些新的数据增强方法。

网络结构

ImageNet Classification with Deep Convolutional 论文笔记,深度学习,论文笔记,论文阅读,人工智能,深度学习,神经网络,卷积神经网络

输入层(Input layer)

输入层的输入是 224x224x3 的图片,即 224x224 的彩色图片,其中 3 通道分别为 RGB 三个通道。

卷积层(C1)

卷积(11x11)–>ReLU–>局部响应归一化(LRN)–>最大池化

卷积(11x11):卷积核大小为 11x11,步长为 4,输出通道数为 96,即输出为 55x55x96 的特征图,分为两组,每组为 55x55x48,分别位于单个 GPU 上。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

局部响应归一化(LRN)

b x , y i = a x , y i / ( k + α ∑ j = m a x ( 0 , i − n / 2 ) m i n ( N − 1 , i + n / 2 ) ( a x , y j ) 2 ) β b_{x,y}^i=a_{x,y}^i/\left(k+\alpha\sum_{j=max(0,i-n/2)}^{min(N-1,i+n/2)}(a_{x,y}^j)^2\right)^\beta bx,yi=ax,yi/ k+αj=max(0,in/2)min(N1,i+n/2)(ax,yj)2 β

其中 a x , y i a_{x,y}^i ax,yi 表示第 i i i 个通道的第 ( x , y ) (x,y) (x,y) 个像素点的输出, N N N 表示总的通道数, n n n 表示归一化的范围, k k k α \alpha α β \beta β n n n 是超参数,本文中取 k = 2 k=2 k=2 α = 1 0 − 4 \alpha=10^{-4} α=104 β = 0.75 \beta=0.75 β=0.75 n = 5 n=5 n=5

最大池化:池化窗口大小为 3x3,步长为 2,每组输出为 27x27x48。

卷积层(C2)

卷积(5x5)–>ReLU–>局部响应归一化(LRN)–>最大池化

卷积(5x5):卷积核大小为 5x5,步长为 1,padding 为 2,每组输出通道数为 128,即每组输出为 27x27x128 的特征图。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

局部响应归一化(LRN) k = 2 k=2 k=2 α = 1 0 − 4 \alpha=10^{-4} α=104 β = 0.75 \beta=0.75 β=0.75 n = 5 n=5 n=5

最大池化:池化窗口大小为 3x3,步长为 2,每组输出为 13x13x128。

卷积层(C3)

卷积(3x3)–>ReLU

卷积(3x3):卷积核大小为 3x3,步长为 1,padding 为 1,每组输出通道数为 192,即每组输出为 13x13x192 的特征图。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

卷积层(C4)

卷积(3x3)–>ReLU

卷积(3x3):卷积核大小为 3x3,步长为 1,padding 为 1,每组输出通道数为 192,即每组输出为 13x13x192 的特征图。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

卷积层(C5)

卷积(3x3)–>ReLU–>最大池化

卷积(3x3):卷积核大小为 3x3,步长为 1,padding 为 1,每组输出通道数为 128,即每组输出为 13x13x128 的特征图。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

最大池化:池化窗口大小为 3x3,步长为 2,每组输出为 6x6x128。

全连接层(FC6)

全连接(卷积)–>ReLU–>Dropout

全连接(卷积):输入为 6x6x256,使用 4096 个 6×6×256 的卷积核进行卷积,效果等同于全连接,即输出为 1x1x4096。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

Dropout:在训练过程中,随机将一些神经元的输出置为 0。

全连接层(FC7)

全连接(卷积)–>ReLU–>Dropout

全连接(卷积):输入为 1x1x4096,输出也为 1x1x4096。

ReLU:ReLU 激活函数,即 f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

Dropout:在训练过程中,随机将一些神经元的输出置为 0。

输出层(Output layer)

全连接(卷积)–>Softmax

全连接(卷积):输入为 1x1x4096,输出为 1x1x1000。

Softmax:将输出转化为概率分布。文章来源地址https://www.toymoban.com/news/detail-800004.html

到了这里,关于ImageNet Classification with Deep Convolutional 论文笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记:Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection

    说在前面:本人是个菜鸡,纯菜鸡,以下我的理解绝对会有错误,欢迎指正共同进步! 文章题目:Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection 论文链接:论文 代码链接:代码 贡献点 1.提出了一种新颖的方法,自适应禁用视觉模态,实现高效的基于深度学

    2024年01月19日
    浏览(31)
  • 【论文阅读24】Better Few-Shot Text Classification with Pre-trained Language Model

    论文标题:Label prompt for multi-label text classification(基于预训练模型对少样本进行文本分类) 发表时间:2021 领域:多标签文本分类 发表期刊:ICANN(顶级会议) 相关代码:无 数据集:无 最近,预先训练过的语言模型在许多基准测试上都取得了非凡的性能。通过从一个大型的

    2024年02月14日
    浏览(31)
  • 【论文阅读】Deep Instance Segmentation With Automotive Radar Detection Points

    基于汽车雷达检测点的深度 实例分割 一个区别: automotive radar  汽车雷达 : 分辨率低,点云稀疏,语义上模糊,不适合直接使用用于密集LiDAR点开发的方法  ; 返回的物体图像不如LIDAR精确,可以在雨,雪,雨夹雪,冰雹,雾,泥和尘土中返回; 在夜间和阴天条件下也比激

    2024年02月13日
    浏览(36)
  • 论文笔记:Multiplex Heterogeneous Graph Convolutional Network

    导致很难捕获到跨不同关系的异构结构信号 什么是多类型节点之间多重网络的关系异质性? 首先要知道什么是多重网络(multiplex network),在一个网络中,用户可能会对一个商品有多种交互,比如点击、购买、评论,这些交互都形成了用户节点与商品节点交互的边,但这些边的

    2024年02月05日
    浏览(31)
  • 可信深度学习Trustworthy Deep Learning相关论文

    Survey An Overview of Catastrophic AI Risks. [paper] Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation. [paper] A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy. [paper] Adversarial Machine Learning: A Systemati

    2024年02月13日
    浏览(29)
  • 基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)

    物体检测的应用已经深入到我们的日常生活中,包括安全、自动车辆系统等。对象检测模型输入视觉效果(图像或视频),并在每个相应对象周围输出带有标记的版本。这说起来容易做起来难,因为目标检测模型需要考虑复杂的算法和数据集,这些算法和数据集在我们说话的时

    2024年02月11日
    浏览(27)
  • 【深度学习】语义分割:论文阅读(NeurIPS 2021)MaskFormer: per-pixel classification is not all you need

    论文:Per-Pixel Classification is Not All You Need for Semantic Segmentation / MaskFormer 代码:代码 官方-代码 笔记: 作者笔记说明 【论文笔记】MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation 总结思路清晰-简洁 【MaskFormer】Per-Pixel Classification is Not All You Needfor Semantic Segmenta

    2024年02月04日
    浏览(67)
  • 【NLP】Label prompt for multi-label text classification论文阅读笔记

            写于来XXXX公司实习的最后一个月,预祝自己实习顺利结束~ Paper address: Label prompt for multi-label text classification | Applied Intelligence ( Applied Intelligence 2023)          在多标签分类任务中,在复杂且未知的标签空间中直接对标签之间的相关性进行建模是相当具有挑战性的。

    2024年02月02日
    浏览(37)
  • 多标签分类论文笔记 | ML-Decoder: Scalable and Versatile Classification Head

    个人论文精读笔记,主要是翻译+心得,欢迎旁观,如果有兴趣可以在评论区留言,我们一起探讨。 Paper: https://arxiv.org/pdf/2111.12933.pdf Code: https://github.com/Alibaba-MIIL/ML_Decoder 翻译 本文介绍了一种新的基于注意力的分类头——ML-Decoder。ML-Decoder通过查询预测类标签的存在,与全局

    2024年02月05日
    浏览(31)
  • 基于CNN的动态手势识别:Real-time Hand Gesture Detection and Classification Using Convolutional Neural Networks

    论文链接:https://arxiv.org/abs/1901.10323 论文代码(PyTorch版本):https://github.com/ahmetgunduz/Real-time-GesRec 论文出处:CVPR2019 从视频流中实时识别动态手势是一项具有挑战性的任务,因为(i)在视频中没有指示手势何时开始和结束,(ii)所表演的手势只应识别一次,以及(iii)考虑内存和功

    2024年02月05日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包