CompletableFuture使用详解

这篇具有很好参考价值的文章主要介绍了CompletableFuture使用详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简介

1.1 概述

在上一篇文章《CompletionService使用与源码分析》中,已经介绍过了Future的局限性,它没法直接对多个任务进行链式、组合等处理,需要借助并发工具类才能完成,实现逻辑比较复杂。

CompletableFuture是对Future的扩展和增强。CompletableFuture实现了Future接口,并在此基础上进行了丰富的扩展,完美弥补了Future的局限性,同时CompletableFuture实现了对任务编排的能力。借助这项能力,可以轻松地组织不同任务的运行顺序、规则以及方式。从某种程度上说,这项能力是它的核心能力。而在以往,虽然通过CountDownLatch等工具类也可以实现任务的编排,但需要复杂的逻辑处理,不仅耗费精力且难以维护。

CompletableFuture的继承结构如下:
completablefuture,美妙的Java源码世界,日益丰满的Java新特性,java,Future

CompletionStage接口定义了任务编排的方法,执行某一阶段,可以向下执行后续阶段。异步执行的,默认线程池是ForkJoinPool.commonPool(),但为了业务之间互不影响,且便于定位问题,强烈推荐使用自定义线程池

CompletableFuture中默认线程池如下:

// 根据commonPool的并行度来选择,而并行度的计算是在ForkJoinPool的静态代码段完成的
private static final boolean useCommonPool =
    (ForkJoinPool.getCommonPoolParallelism() > 1);

private static final Executor asyncPool = useCommonPool ?
    ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

ForkJoinPool中初始化commonPool的参数

static {
    // initialize field offsets for CAS etc
    try {
        U = sun.misc.Unsafe.getUnsafe();
        Class<?> k = ForkJoinPool.class;
        CTL = U.objectFieldOffset
            (k.getDeclaredField("ctl"));
        RUNSTATE = U.objectFieldOffset
            (k.getDeclaredField("runState"));
        STEALCOUNTER = U.objectFieldOffset
            (k.getDeclaredField("stealCounter"));
        Class<?> tk = Thread.class;
        ……
    } catch (Exception e) {
        throw new Error(e);
    }

    commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
    defaultForkJoinWorkerThreadFactory =
        new DefaultForkJoinWorkerThreadFactory();
    modifyThreadPermission = new RuntimePermission("modifyThread");

    // 调用makeCommonPool方法创建commonPool,其中并行度为逻辑核数-1
    common = java.security.AccessController.doPrivileged
        (new java.security.PrivilegedAction<ForkJoinPool>() {
            public ForkJoinPool run() { return makeCommonPool(); }});
    int par = common.config & SMASK; // report 1 even if threads disabled
    commonParallelism = par > 0 ? par : 1;
}

1.2 功能

1.2.1 常用方法
依赖关系
  • thenApply():把前面任务的执行结果,交给后面的Function
  • thenCompose():用来连接两个有依赖关系的任务,结果由第二个任务返回
and集合关系
  • thenCombine():合并任务,有返回值
  • thenAccepetBoth():两个任务执行完成后,将结果交给thenAccepetBoth处理,无返回值
  • runAfterBoth():两个任务都执行完成后,执行下一步操作(Runnable类型任务)
or聚合关系
  • applyToEither():两个任务哪个执行的快,就使用哪一个结果,有返回值
  • acceptEither():两个任务哪个执行的快,就消费哪一个结果,无返回值
  • runAfterEither():任意一个任务执行完成,进行下一步操作(Runnable类型任务)
并行执行
  • allOf():当所有给定的 CompletableFuture 完成时,返回一个新的 CompletableFuture
  • anyOf():当任何一个给定的CompletablFuture完成时,返回一个新的CompletableFuture
结果处理
  • whenComplete:当任务完成时,将使用结果(或 null)和此阶段的异常(或 null如果没有)执行给定操作
  • exceptionally:返回一个新的CompletableFuture,当前面的CompletableFuture完成时,它也完成,当它异常完成时,给定函数的异常触发这个CompletableFuture的完成

1.2.2 异步操作

CompletableFuture提供了四个静态方法来创建一个异步操作:

public static CompletableFuture<Void> runAsync(Runnable runnable)
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

这四个方法的区别:

  • runAsync()Runnable函数式接口类型为参数,没有返回结果,supplyAsync()Supplier函数式接口类型为参数,返回结果类型为U;Supplier接口的 get()是有返回值的(会阻塞)
  • 使用没有指定Executor的方法时,内部使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码。如果指定线程池,则使用指定的线程池运行。
  • 默认情况下CompletableFuture会使用公共的ForkJoinPool线程池,这个线程池默认创建的线程数是 CPU 的核数(也可以通过 JVM option:-Djava.util.concurrent.ForkJoinPool.common.parallelism 来设置ForkJoinPool线程池的线程数)。如果所有CompletableFuture共享一个线程池,那么一旦有任务执行一些很慢的 I/O 操作,就会导致线程池中所有线程都阻塞在 I/O 操作上,从而造成线程饥饿,进而影响整个系统的性能。所以,强烈建议你要根据不同的业务类型创建不同的线程池,以避免互相干扰
异步操作
Runnable runnable = () -> System.out.println("无返回结果异步任务");
CompletableFuture.runAsync(runnable);

CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    System.out.println("有返回值的异步任务");
    try {
        Thread.sleep(5000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return "Hello World";
});
String result = future.get();
获取结果(join&get)

join()和get()方法都是用来获取CompletableFuture异步之后的返回值。join()方法抛出的是uncheck异常(即未经检查的异常),不会强制开发者抛出。get()方法抛出的是经过检查的异常,ExecutionException, InterruptedException 需要用户手动处理(抛出或者 try catch)

结果处理

当CompletableFuture的计算结果完成,或者抛出异常的时候,我们可以执行特定的 Action。主要是下面的方法:

public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)
  • Action的类型是BiConsumer<? super T,? super Throwable>,它可以处理正常的计算结果,或者异常情况。
  • 方法不以Async结尾,意味着Action使用相同的线程执行,而Async可能会使用其它的线程去执行(如果使用相同的线程池,也可能会被同一个线程选中执行)。
  • 这几个方法都会返回CompletableFuture,当Action执行完毕后它的结果返回原始的CompletableFuture的计算结果或者返回异常
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
    }
    if (new Random().nextInt(10) % 2 == 0) {
        int i = 12 / 0;
    }
    System.out.println("执行结束!");
    return "test";
});
// 任务完成或异常方法完成时执行该方法
// 如果出现了异常,任务结果为null
future.whenComplete(new BiConsumer<String, Throwable>() {
    @Override
    public void accept(String t, Throwable action) {
        System.out.println(t+" 执行完成!");
    }
});
// 出现异常时先执行该方法
future.exceptionally(new Function<Throwable, String>() {
    @Override
    public String apply(Throwable t) {
        System.out.println("执行失败:" + t.getMessage());
        return "异常xxxx";
    }
});

future.get();

上面的代码当出现异常时,输出结果如下

执行失败:java.lang.ArithmeticException: / by zero
null 执行完成!

二、应用场景

2.1 结果转换

将上一段任务的执行结果作为下一阶段任务的入参参与重新计算,产生新的结果。

thenApply

thenApply接收一个函数作为参数,使用该函数处理上一个CompletableFuture调用的结果,并返回一个具有处理结果的Future对象。

常用使用:

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)

具体使用:

CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
    int result = 100;
    System.out.println("第一次运算:" + result);
    return result;
}).thenApply(number -> {
    int result = number * 3;
    System.out.println("第二次运算:" + result);
    return result;
});
thenCompose

thenCompose的参数为一个返回CompletableFuture实例的函数,该函数的参数是先前计算步骤的结果。

常用方法:

public <U> CompletableFuture<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);
public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn) ;

具体使用:

CompletableFuture<Integer> future = CompletableFuture
    .supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int number = new Random().nextInt(30);
            System.out.println("第一次运算:" + number);
            return number;
        }
    })
    .thenCompose(new Function<Integer, CompletionStage<Integer>>() {
        @Override
        public CompletionStage<Integer> apply(Integer param) {
            return CompletableFuture.supplyAsync(new Supplier<Integer>() {
                @Override
                public Integer get() {
                    int number = param * 2;
                    System.out.println("第二次运算:" + number);
                    return number;
                }
            });
        }
    });

thenApply 和 thenCompose的区别

  • thenApply转换的是泛型中的类型,返回的是同一个CompletableFuture
  • thenCompose将内部的CompletableFuture调用展开来并使用上一个CompletableFutre调用的结果在下一步的CompletableFuture调用中进行运算,是生成一个新的CompletableFuture

2.2 结果消费

结果处理结果转换系列函数返回一个新的CompletableFuture不同,结果消费系列函数只对结果执行Action,而不返回新的计算值。

根据对结果的处理方式,结果消费函数又可以分为下面三大类:

  • thenAccept():对单个结果进行消费
  • thenAcceptBoth():对两个结果进行消费
  • thenRun():不关心结果,只对结果执行Action
thenAccept

观察该系列函数的参数类型可知,它们是函数式接口Consumer,这个接口只有输入,没有返回值。

常用方法:

public CompletionStage<Void> thenAccept(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);

具体使用:

CompletableFuture<Void> future = CompletableFuture
    .supplyAsync(() -> {
        int number = new Random().nextInt(10);
        System.out.println("第一次运算:" + number);
        return number;
    }).thenAccept(number ->
                  System.out.println("第二次运算:" + number * 5));
thenAcceptBoth

thenAcceptBoth函数的作用是,当两个CompletionStage都正常完成计算的时候,就会执行提供的action消费两个异步的结果。

常用方法:

public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);

具体使用:

CompletableFuture<Integer> futrue1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(3) + 1;
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("任务1结果:" + number);
        return number;
    }
});

CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(3) + 1;
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("任务2结果:" + number);
        return number;
    }
});

futrue1.thenAcceptBoth(future2, new BiConsumer<Integer, Integer>() {
    @Override
    public void accept(Integer x, Integer y) {
        System.out.println("最终结果:" + (x + y));
    }
});
thenRun

thenRun也是对线程任务结果的一种消费函数,与thenAccept不同的是,thenRun会在上一阶段 CompletableFuture计算完成的时候执行一个Runnable,而Runnable并不使用该CompletableFuture计算的结果。

常用方法:

public CompletionStage<Void> thenRun(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action);

具体使用:

CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> {
    int number = new Random().nextInt(10);
    System.out.println("第一阶段:" + number);
    return number;
}).thenRun(() ->
           System.out.println("thenRun 执行"));

2.3 结果组合

thenCombine

合并两个线程任务的结果,并进一步处理。

常用方法:

public <U,V> CompletableFuture<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);

public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);

public <U,V> CompletableFuture<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn, Executor executor);

具体使用:

CompletableFuture<Integer> future1 = CompletableFuture
    .supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int number = new Random().nextInt(10);
            System.out.println("任务1结果:" + number);
            return number;
        }
    });
CompletableFuture<Integer> future2 = CompletableFuture
    .supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int number = new Random().nextInt(10);
            System.out.println("任务2结果:" + number);
            return number;
        }
    });
CompletableFuture<Integer> result = future1
    .thenCombine(future2, new BiFunction<Integer, Integer, Integer>() {
        @Override
        public Integer apply(Integer x, Integer y) {
            return x + y;
        }
    });
System.out.println("组合后结果:" + result.get());

2.4 任务交互

线程交互指将两个线程任务获取结果的速度相比较,按一定的规则进行下一步处理

applyToEither

两个线程任务相比较,先获得执行结果的,就对该结果进行下一步的转化操作。

常用方法:

public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);

具体使用:

CompletableFuture<Integer> future1 = CompletableFuture
    .supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int number = new Random().nextInt(10);
            try {
                TimeUnit.SECONDS.sleep(number);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("任务1结果:" + number);
            return number;
        }
    });
CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(10);
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("任务2结果:" + number);
        return number;
    }
});

future1.applyToEither(future2, new Function<Integer, Integer>() {
    @Override
    public Integer apply(Integer number) {
        System.out.println("最快结果:" + number);
        return number * 2;
    }
});
acceptEither

两个线程任务相比较,先获得执行结果的,就对该结果进行下一步的消费操作。

常用方法:

public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other,Consumer<? super T> action);
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action);

具体使用:

CompletableFuture<Integer> future1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(10) + 1;
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("第一阶段:" + number);
        return number;
    }
});

CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(10) + 1;
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("第二阶段:" + number);
        return number;
    }
});

future1.acceptEither(future2, new Consumer<Integer>() {
    @Override
    public void accept(Integer number) {
        System.out.println("最快结果:" + number);
    }
});
runAfterEither

两个线程任务相比较,有任何一个执行完成,就进行下一步操作,不关心运行结果。

常用方法:

public CompletionStage<Void> runAfterEither(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action);

具体使用:

CompletableFuture<Integer> future1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(5);
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("任务1结果:" + number);
        return number;
    }
});

CompletableFuture<Integer> future2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
    @Override
    public Integer get() {
        int number = new Random().nextInt(5);
        try {
            TimeUnit.SECONDS.sleep(number);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("任务2结果:" + number);
        return number;
    }
});

future1.runAfterEither(future2, new Runnable() {
    @Override
    public void run() {
        System.out.println("已经有一个任务完成了");
    }
}).join();
anyOf

anyOf() 的参数是多个给定的 CompletableFuture,当其中的任何一个完成时,方法返回这个 CompletableFuture

常用方法:

public static CompletableFuture<Object> anyOf(CompletableFuture<?>... cfs)

具体使用:

Random random = new Random();
CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(random.nextInt(5));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return "hello";
});

CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(random.nextInt(1));
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return "world";
});
CompletableFuture<Object> result = CompletableFuture.anyOf(future1, future2);
allOf

allOf方法用来实现多 CompletableFuture 的同时返回。

常用方法:

public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs)

具体使用:

CompletableFuture<String> future1 = CompletableFuture.supplyAsync(() -> {
    try {
        TimeUnit.SECONDS.sleep(2);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    System.out.println("future1完成!");
    return "future1完成!";
});

CompletableFuture<String> future2 = CompletableFuture.supplyAsync(() -> {
    System.out.println("future2完成!");
    return "future2完成!";
});

CompletableFuture<Void> combindFuture = CompletableFuture.allOf(future1, future2);

try {
    combindFuture.get();
} catch (InterruptedException e) {
    e.printStackTrace();
} catch (ExecutionException e) {
    e.printStackTrace();
}

CompletableFuture常用方法总结:
completablefuture,美妙的Java源码世界,日益丰满的Java新特性,java,Future
注:CompletableFuture中还有很多功能丰富的方法,这里就不一一列举。

三、使用案例

实现最优的“烧水泡茶”程序

著名数学家华罗庚先生在《统筹方法》这篇文章里介绍了一个烧水泡茶的例子,文中提到最优的工序应该是下面这样:

completablefuture,美妙的Java源码世界,日益丰满的Java新特性,java,Future

对于烧水泡茶这个程序,一种最优的分工方案:用两个线程 T1 和 T2 来完成烧水泡茶程序,T1 负责洗水壶、烧开水、泡茶这三道工序,T2 负责洗茶壶、洗茶杯、拿茶叶三道工序,其中 T1 在执行泡茶这道工序时需要等待 T2 完成拿茶叶的工序。文章来源地址https://www.toymoban.com/news/detail-800102.html

基于Future实现
public class FutureTaskTest{

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 创建任务T2的FutureTask
        FutureTask<String> ft2 = new FutureTask<>(new T2Task());
        // 创建任务T1的FutureTask
        FutureTask<String> ft1 = new FutureTask<>(new T1Task(ft2));

        // 线程T1执行任务ft2
        Thread T1 = new Thread(ft2);
        T1.start();
        // 线程T2执行任务ft1
        Thread T2 = new Thread(ft1);
        T2.start();
        // 等待线程T1执行结果
        System.out.println(ft1.get());

    }
}

// T1Task需要执行的任务:
// 洗水壶、烧开水、泡茶
class T1Task implements Callable<String> {
    FutureTask<String> ft2;
    // T1任务需要T2任务的FutureTask
    T1Task(FutureTask<String> ft2){
        this.ft2 = ft2;
    }
    @Override
    public String call() throws Exception {
        System.out.println("T1:洗水壶...");
        TimeUnit.SECONDS.sleep(1);

        System.out.println("T1:烧开水...");
        TimeUnit.SECONDS.sleep(15);
        // 获取T2线程的茶叶
        String tf = ft2.get();
        System.out.println("T1:拿到茶叶:"+tf);

        System.out.println("T1:泡茶...");
        return "上茶:" + tf;
    }
}
// T2Task需要执行的任务:
// 洗茶壶、洗茶杯、拿茶叶
class T2Task implements Callable<String> {
    @Override
    public String call() throws Exception {
        System.out.println("T2:洗茶壶...");
        TimeUnit.SECONDS.sleep(1);

        System.out.println("T2:洗茶杯...");
        TimeUnit.SECONDS.sleep(2);

        System.out.println("T2:拿茶叶...");
        TimeUnit.SECONDS.sleep(1);
        return "龙井";
    }
}
基于CompletableFuture实现
public class CompletableFutureTest {

    public static void main(String[] args) {

        //任务1:洗水壶->烧开水
        CompletableFuture<Void> f1 = CompletableFuture
            .runAsync(() -> {
                System.out.println("T1:洗水壶...");
                sleep(1, TimeUnit.SECONDS);

                System.out.println("T1:烧开水...");
                sleep(15, TimeUnit.SECONDS);
            });
        //任务2:洗茶壶->洗茶杯->拿茶叶
        CompletableFuture<String> f2 = CompletableFuture
            .supplyAsync(() -> {
                System.out.println("T2:洗茶壶...");
                sleep(1, TimeUnit.SECONDS);

                System.out.println("T2:洗茶杯...");
                sleep(2, TimeUnit.SECONDS);

                System.out.println("T2:拿茶叶...");
                sleep(1, TimeUnit.SECONDS);
                return "龙井";
            });
        //任务3:任务1和任务2完成后执行:泡茶
        CompletableFuture<String> f3 = f1.thenCombine(f2, (__, tf) -> {
            System.out.println("T1:拿到茶叶:" + tf);
            System.out.println("T1:泡茶...");
            return "上茶:" + tf;
        });
        //等待任务3执行结果
        System.out.println(f3.join());
    }

    static void sleep(int t, TimeUnit u){
        try {
            u.sleep(t);
        } catch (InterruptedException e) {
        }
    }
}

到了这里,关于CompletableFuture使用详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • JUC之十一:CompletableFuture用法详解

    前面介绍了 FutureTask ,获取异步执行结果通过get的形式,而且会阻塞主线程,随着开发的越来越越复杂已经无法满足真正开发场景,我们试想一个例子: 我们再炒菜的时候,先洗菜,切菜,炒菜,盛菜,然后吃。。。。。。 如果还用原来的 future 来操作的话,需要每一个步骤

    2024年02月16日
    浏览(40)
  • Java组合式异步编程CompletableFuture

    CompletableFuture是Java 8中引入的一个功能强大的Future实现类,它的字面翻译是“可完成的Future”。 CompletableFuture对并发编程进行了增强,可以方便地将多个有一定依赖关系的异步任务以流水线的方式组合在一起,大大简化多异步任务的开发。 CompletableFuture实现了两个接口,一个

    2024年04月09日
    浏览(38)
  • CompletableFuture:Java中的异步编程利器

    前言: 在秋招的面试中,面试官问了很多关于异步编程相关的知识点,朋友最近也和我聊到了这个话题,因此今天咱们来讨论讨论这个知识点! 随着现代软件系统的日益复杂,对于非阻塞性和响应性的需求也在不断增加。Java为我们提供了多种工具和技术来满足这些需求,其

    2024年02月04日
    浏览(37)
  • Java的CompletableFuture,Java的多线程开发

    如下图: 以后用到再加 get() 和 join() 方法区别? 都可以阻塞线程 —— 等所有任务都执行完了再执行后续代码。 anyOf() 和 allOf() 的区别? 无返回值 推荐: 开启多线程——无返回值的——阻塞 :test06 有返回值 推荐:开启多线程——有返回值的,返回一个新的List——阻塞—

    2024年02月06日
    浏览(46)
  • 【Java8新特性--->异步处理】CompletableFuture

    一、引入 假设一个商品详情页需要以下操作: 查询展示商品的基本信息耗时:0.5s 查询展示商品的销售信息耗时:0.7s 查询展示商品的图片信息耗时:1s 查询展示商品销售属性耗时:0.3s 查询展示商品规格属性耗时:1.5s 查询展示商品详情信息耗时:1s 即使每个查询时间耗时不

    2024年02月06日
    浏览(43)
  • 「Java」《深入解析Java多线程编程利器:CompletableFuture》

    多线程编程是指在一个程序中同时执行多个线程来提高系统的并发性和响应性。在现代计算机系统中,多线程编程已经成为开发者日常工作的一部分。以下是对多线程编程需求和挑战的介绍: 需求: 提高系统的性能:通过同时执行多个线程,可以利用多核处理器的优势,实

    2024年02月11日
    浏览(50)
  • CompletableFuture异步编程事务及多数据源配置问题(含gitee源码)

    仓库地址: buxingzhe: 一个多数据源和多线程事务练习项目 小伙伴们在日常编码中经常为了提高程序运行效率采用多线程编程,在不涉及事务的情况下,使用dou.lea大神提供的CompletableFuture异步编程利器,它提供了许多优雅的api,我们可以很方便的进行异步多线程编程,速度杠杠

    2024年02月05日
    浏览(40)
  • CompletableFuture异步任务编排使用

    runAsync(runnable):无返回值 runAsync(runnable, executor):无返回值,可自定义线程池 supplyAsync(runnable):有返回值 supplyAsync(runnable, executor):有回值,可自定义线程池 相关代码演示: 解析:oneFuture.join()获取的执行结果为null,因为runAsync是没有返回结果的。 allOf(future1,future2,future3…):

    2024年02月04日
    浏览(37)
  • CompletableFuture的使用

    目录 一、前言 二、概念介绍  三、自身特性 四、使用方式 1、异步执行一个任务并获取结果 2、异步执行一个任务并处理异常 3、异步执行多个任务并合并结果 4、异步执行多个任务并处理其中一个任务的结果 5、串行执行多个任务 6、 检查异步任务是否执行完成和执行回调

    2024年02月15日
    浏览(45)
  • 异步编程 - 06 基于JDK中的Future实现异步编程(中)_CompletableFuture源码解析

    CompletableFuture实现了CompletionStage接口 。 1)一个CompletionStage代表着一个异步计算节点,当另外一个CompletionStage计算节点完成后,当前CompletionStage会执行或者计算一个值;一个节点在计算终止时完成,可能反过来触发其他依赖其结果的节点开始计算。 2)一个节点(CompletionStag

    2024年02月09日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包