ML:2-2-1 Tensorflow

这篇具有很好参考价值的文章主要介绍了ML:2-2-1 Tensorflow。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


【吴恩达p60-61】

1. Tensorflow实现

  1. 继续看手写数字识别的例题
  2. 第一步,我们上周学习了。
  3. 第二步,让Tensorflow去编译模型。最重要的一步是通过指定你想使用的loss函数。(这里我们会用BinaryCrossentropy)
  4. 第三步,使用fit函数告诉Tensorflow将在第一步中指定的model,和第二步中指定的cost function拟合到XY。(第3步是用来训练模型的)
  5. epoch是一个专业名词,指定gradient descent步骤的数量

ML:2-2-1 Tensorflow,tensorflow,人工智能,python

2. 模型训练细节

【了解Tensorflow训练模型的代码细节。】

  1. 训练模型的三个步骤:
    1. 定义模型f(x)
    2. 找出loss + cost function。(loss是单个样本的误差,cost是整体的误差和)
    3. 训练数据,最小化cost function。(ex. 使用gradient descent)
  2. 使用这3步训练neural network的模型:
    1. 定义model的式子。
    2. compile模型,并且告诉它你想使用的loss function。(这里的代码表示,我们将使用Binary Cross Entropy作为loss function。后续通过对其取平均值,可以得到整个neural network的cost function。)
    3. 调用函数,去最小化cost function。

ML:2-2-1 Tensorflow,tensorflow,人工智能,python

2.1 定义模型f(x)

  1. a3 = f(x)

ML:2-2-1 Tensorflow,tensorflow,人工智能,python

2.2 找到loss and cost funciton

  1. 必须指定loss function,这也会用来定义cost function。
  2. L(f(x), y)函数里y是truth label(target label
  3. f(x)是neural network的output。
  4. Tensorflow知道你要最小化cost是所有training example loss的平均值。
  5. 如果项训练的是regression的模型,你也可以告诉Tensorflow使用不同的loss function编译模型。(比如,要去最小化mean squared error,就可以让loss = MeanSquaredError())
  6. 神经网络里的W,B都是2维的数据
    ML:2-2-1 Tensorflow,tensorflow,人工智能,python

ML:2-2-1 Tensorflow,tensorflow,人工智能,python

2.3 Gradient descent

  1. 需要分别对每一层每一神经元,更新它们的w,j。
  2. backpropagation反向传播:用来计算neural network里偏导项的一种算法。(Tensorflow可以做到:model.fit(x,y, epochs = 100),epochs表示,迭代100次。)
  3. 事实上,Tensorflow可以使用另一种比gradient descent更快的算法来做。

ML:2-2-1 Tensorflow,tensorflow,人工智能,python文章来源地址https://www.toymoban.com/news/detail-800163.html

到了这里,关于ML:2-2-1 Tensorflow的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能:Pytorch,TensorFlow,MXNET,PaddlePaddle 啥区别?

    学习人工智能的时候碰到各种深度神经网络框架:pytorch,TensorFlow,MXNET,PaddlePaddle,他们有什么区别? PyTorch、TensorFlow、MXNet和PaddlePaddle都是深度学习领域的开源框架,它们各自具有不同的特点和优势。以下是它们之间的主要区别: PyTorch是一个开源的Python机器学习库,它基

    2024年04月16日
    浏览(69)
  • 人工智能TensorFlow PyTorch物体分类和目标检测合集【持续更新】

    1. 基于TensorFlow2.3.0的花卉识别 基于TensorFlow2.3.0的花卉识别Android APP设计_基于安卓的花卉识别_lilihewo的博客-CSDN博客 2. 基于TensorFlow2.3.0的垃圾分类 基于TensorFlow2.3.0的垃圾分类Android APP设计_def model_load(img_shape=(224, 224, 3)_lilihewo的博客-CSDN博客   3. 基于TensorFlow2.3.0的果蔬识别系统的

    2024年02月09日
    浏览(62)
  • 鱼类识别Python+深度学习人工智能+TensorFlow+卷积神经网络算法

    鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑

    2024年02月02日
    浏览(101)
  • 【人工智能】Transformers 快速上手: 为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理

    为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理 🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。 🤗 Transformers 提供了便于快速下载和使用的API,让你可以把

    2024年02月08日
    浏览(69)
  • 每个AI/ML工程师必须了解的人工智能框架和工具

    每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未

    2024年01月21日
    浏览(49)
  • ML:2-2-1 Tensorflow

    【吴恩达p60-61】 继续看手写数字识别的例题 第一步,我们上周学习了。 第二步,让Tensorflow去编译模型。最重要的一步是通过指定你想使用的loss函数。(这里我们会用BinaryCrossentropy) 第三步,使用fit函数告诉Tensorflow将在第一步中指定的model,和第二步中指定的cost function拟合

    2024年01月18日
    浏览(27)
  • TensorFlow Lite,ML Kit 和 Flutter 移动深度学习:6~11

    原文:Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter 协议:CC BY-NC-SA 4.0 译者:飞龙 本文来自【ApacheCN 深度学习 译文集】,采用译后编辑(MTPE)流程来尽可能提升效率。 不要担心自己的形象,只关心如何实现目标。——《原则》,生活原则 2.3.c 认证是任何应用中最突出的

    2023年04月24日
    浏览(106)
  • 【边缘端环境配置】英伟达Jetson系列安装pytorch/tensorflow/ml/tensorrt环境(docker一键拉取)

    Jetson系列板卡是算法边缘端部署无法避开的一道坎,作为英伟达旗下产品,可以使用tensorrt加速,因此用户较多,生态较好;但是由于是ARM架构,因此无法使用x86部署方式,用过的都有一堆血泪史可以诉说,以下是英伟达官方介绍: NVIDIA® Jetson™ 是适用于自主机器和其他嵌入

    2023年04月22日
    浏览(53)
  • 事实胜于雄辩,苹果MacOs能不能玩儿机器/深度(ml/dl)学习(Python3.10/Tensorflow2)

    坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹

    2023年04月11日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包