【算法与数据结构】62、LeetCode不同路径

这篇具有很好参考价值的文章主要介绍了【算法与数据结构】62、LeetCode不同路径。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、题目

【算法与数据结构】62、LeetCode不同路径,算法,算法

二、解法

2.1 动态规划解法

  思路分析:机器人只能向下或者向右移动,那么到达(i,j)位置的路径和(i-1,j)以及(i,j-1)有关。那么我们就得到的动态规划的表达式 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] dp[i][j]=dp[i1][j]+dp[i][j1]。其中,因为到达第一行和第一列位置的路径只有一条,因此dp数组中第一行第一列的元素都为1。根据如上信息,我们写出如下代码。
  程序如下

class Solution {
public:
	int uniquePaths(int m, int n) {
		vector<vector<int>> dp(m, vector<int>(n, 1));
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
			}
		}
		return dp[m - 1][n - 1];
	}
};

复杂度分析:

  • 时间复杂度: O ( m ∗ n ) O(m*n) O(mn)
  • 空间复杂度: O ( m ∗ n ) O(m*n) O(mn)

  上述代码还可以再空间上进行压缩。从二维数组的角度来看,(i,j)位置的路径数等于它上方的元素和左边的元素之和。如果省略掉上方的元素,我们就能用一个一维数组来表示dp数组。迭代公式为 d p [ i ] = d p [ i ] + d o p [ i − 1 ] dp[i] = dp[i]+dop[i-1] dp[i]=dp[i]+dop[i1],其中dop[i-1]代表左边元素,公式右边旧的dp[i]代表上方元素。最终输出为dp[n-1]。

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> dp(n);
        for (int i = 0; i < n; i++) dp[i] = 1;
        for (int j = 1; j < m; j++) {
            for (int i = 1; i < n; i++) {
                dp[i] += dp[i - 1];
            }
        }
        return dp[n - 1];
    }
};

复杂度分析:

  • 时间复杂度: O ( m ∗ n ) O(m*n) O(mn)
  • 空间复杂度: O ( n ) O(n) O(n)

2.2 数论解法

  思路分析:从数学上我们可以知道,要到达终点,每次又只能走一步,那么总共需要的步数是 m + n − 2 m+n-2 m+n2,那么有 m − 1 m-1 m1步是要往下走的,那么问题就变成了在 m + n − 2 m+n-2 m+n2步中, m − 1 m-1 m1步往下走有多少种组合。这是一个组合问题。因此,问题变成计算 C m + n − 2 m − 1 = ( m + n − 2 ) ! ( m − 1 ) ! ( n − 1 ) ! = ( m + n − 2 ) ∗ . . . ( n + 1 ) ∗ n ( m − 1 ) ! C_{m+n-2}^{m-1}=\frac{(m+n-2)!}{{(m-1)!}{(n-1)!}}=\frac{(m+n-2)*...(n+1)*n}{(m-1)!} Cm+n2m1=(m1)!(n1)!(m+n2)!=(m1)!(m+n2)...(n+1)n。结合上述讨论,我们写出如下代码。代码当中,为了防止乘积中分子溢出,我们首先使用long long类型,并在循环中不断除以分母。
  程序如下

class Solution {
public:
	int uniquePaths(int m, int n) {
		long long numerator = 1; // 分子
		int denominator = m - 1; // 分母
		int num1 = m - 1, num2 = m + n - 2;
		while (num1--) {
			numerator *= (num2--);
			while (denominator != 0 && numerator % denominator == 0) {	// 分母不能为0, 且分子要能整除分母
				numerator /= denominator;
				denominator--;
			}
		}
		return numerator;
	}
};

复杂度分析:

  • 时间复杂度: O ( m ) O(m) O(m)
  • 空间复杂度: O ( 1 ) O(1) O(1)

三、完整代码

# include <iostream>
# include <vector>
using namespace std;

// 62、不同路径I
class Solution {
public:
	int uniquePaths(int m, int n) {
		vector<vector<int>> dp(m, vector<int>(n, 1));
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
			}
		}
		return dp[m - 1][n - 1];
	}
};

// 滚动数组削减空间复杂度
//class Solution {
//public:
//	int uniquePaths(int m, int n) {
//		vector<int> dp(n);
//		for (int i = 0; i < n; i++) dp[i] = 1;
//		for (int j = 1; j < m; j++) {
//			for (int i = 1; i < n; i++) {
//				dp[i] += dp[i - 1];
//			}
//		}
//		return dp[n - 1];
//	}
//};

// 数论方法
//class Solution {
//public:
//	int uniquePaths(int m, int n) {
//		long long numerator = 1; // 分子
//		int denominator = m - 1; // 分母
//		int num1 = m - 1, num2 = m + n - 2;
//		while (num1--) {
//			numerator *= (num2--);
//			while (denominator != 0 && numerator % denominator == 0) {	// 分母不能为0, 且分子要能整除分母
//				numerator /= denominator;
//				denominator--;
//			}
//		}
//		return numerator;
//	}
//};

int main() {
	int m = 3, n = 2;
	Solution s1;
	int result = s1.uniquePaths(m, n);
	cout << result << endl;
	system("pause");
	return 0;
}

end文章来源地址https://www.toymoban.com/news/detail-800231.html

到了这里,关于【算法与数据结构】62、LeetCode不同路径的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法与数据结构】112、LeetCode路径总和

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题通过计算根节点到叶子节点路径上节点的值之和,然后再对比目标值。利用文章【算法和数据结构】257、LeetCode二叉树的所有路径中的递归算法。 这里要注意,默认路径之和是

    2024年02月11日
    浏览(53)
  • 【Leetcode】62.不同路径

    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 示例1: 示例2: 示例3: 示例4: 提示: 1 = m, n = 100 题目数

    2024年02月15日
    浏览(35)
  • 动态规划 Leetcode 62 不同路径

    Leetcode 62 学习记录自代码随想录 要点:1.二维表格,想到(i,j)去代表其坐标,dp数组也因此为二维数组; 2.递推公式 d p [ i ] [ j ] dp[i][j] d p [ i ] [ j ] 的上一步只能是其左边或上边,所以 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] d p [ i ] [ j ] =

    2024年03月13日
    浏览(42)
  • leetcode每日一题:62. 不同路径

    系列:动态规划 语言:java 难度:中等 题目来源:Leetcode62. 不同路径 开启动态规划章节了!!欢迎您在留言和我一起完成每日打卡,以后每天8点半前发布每日一题。 原题链接:Leetcode62. 不同路径 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )

    2023年04月22日
    浏览(45)
  • java数据结构与算法刷题-----LeetCode96. 不同的二叉搜索树

    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完): https://blog.csdn.net/grd_java/article/details/123063846 很多人觉得动态规划很难,但它就是固定套路而已。其实动态规划只不过是将多余的步骤,提前放到dp数组中(就是一个数组,只

    2024年01月21日
    浏览(56)
  • 代码随想录Day33 LeetCode T62不同路径 LeetCode T63 不同路径II

    动规五部曲 1.确定dp数组含义 2.确定递推公式 3.初始化数组 4.确定遍历方式 5.打印dp数组查看分析问题 题目链接:62. 不同路径 - 力扣(LeetCode) 注:n行m列而不是m行n列 1.确定dp数组含义 代表到达此下标有多少条路径 2.确定递推公式 因为只能向右或者向下走,所以到达i,j这个点的

    2024年02月06日
    浏览(51)
  • 算法Day39 | 62. 不同路径,63. 不同路径 II

    题目链接:62. 不同路径 dp[i][j] 结果为从起点到该点有多少路径。 递归公式: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 初始化:因为只能从上往下、从左往右走,因此最上侧,最左侧初始化为1(1种路径) 遍历顺序:从上往下,从左往右 也可以使用 滚动 (一维)数组。 其中 dp[j] 表示

    2024年02月10日
    浏览(46)
  • 算法训练Day39:62.不同路径 63. 不同路径 II 动态规划

    Category Difficulty Likes Dislikes ContestSlug ProblemIndex Score algorithms Medium (67.70%) 1746 0 - - 0 Tags Companies 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

    2023年04月25日
    浏览(45)
  • 算法D39 | 动态规划2 | 62.不同路径 63. 不同路径 II

    今天开始逐渐有 dp的感觉了,题目不多,就两个 不同路径,可以好好研究一下 62.不同路径  本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。  代码随想录 视频讲解: 动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili 这个题看

    2024年04月10日
    浏览(45)
  • 算法随想录第三十九天打卡|62.不同路径 , 63. 不同路径 II

    本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。  代码随想录 视频讲解: 动态规划中如何初始化很重要!| LeetCode:62.不同路径_哔哩哔哩_bilibili 总结 把m和n弄反了。 https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.htmlhttps://programmercarl.com/00

    2024年01月20日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包