python数字图像处理基础(七)——直方图均衡化、傅里叶变换

这篇具有很好参考价值的文章主要介绍了python数字图像处理基础(七)——直方图均衡化、傅里叶变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

直方图均衡化

均衡化原理

图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。

简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高 -> 均衡

本质上,直方图均衡化的工作原理是:

  • 1.计算图像像素强度的直方图
  • 2.均匀展开并分布最频繁的像素值(即直方图中计数最大的像素值)
  • 3.给出累积分布函数(CDF)的线性趋势

python数字图像处理基础(七)——直方图均衡化、傅里叶变换,数字图像处理,python,计算机视觉,开发语言

注意到以上直方图有许多峰值,这表明有很多像素被归入到这些各自的bin中。使用直方图均衡化,我们的目标是将这些像素分散到没有太多像素的bin中。

均衡化效果

python数字图像处理基础(七)——直方图均衡化、傅里叶变换,数字图像处理,python,计算机视觉,开发语言

注意输入图像的对比度是如何显著提高的,但代价是也提高了输入图像中的噪声的对比度。

这就提出了一个问题:是否有可能在不增加噪声的同时提高图像对比度?
答案是“是的”,你只需要应用自适应直方图均衡化

通过自适应直方图均衡化,我们将输入图像划分为M × N网格。然后我们对网格中的每个单元进行均衡处理,从而获得更高质量的输出图像:

python数字图像处理基础(七)——直方图均衡化、傅里叶变换,数字图像处理,python,计算机视觉,开发语言

标准直方图均衡化

OpenCV 包括通过以下两个函数实现基本直方图均衡和自适应直方图均衡:

cv2.equalizeHist
cv2.createCLAHE

应用cv2.equalizeHist()函数非常简单,只需将图像转换为灰度,然后调用cv2.equalizeHist即可:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized = cv2.equalizeHist(gray)

自适应直方图均衡化

实现自适应直方图均衡化要求:

1.将输入图像转换为灰度/从中提取单个通道
2.使用cv2.createCLAHE实例化CLAHE算法
3.在CLAHE对象上调用.apply()方法来应用直方图均衡化
这比听起来容易得多,只需要几行代码:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
equalized = clahe.apply(gray)

注意,我们为cv2.createCLAHE提供了两个参数:

  • clipLimit:这是对比度限制的阈值
  • tileGridSize:将输入图像划分为M × N块,然后对每个局部块应用直方图均衡化

傅里叶变换

原理

傅里叶变换常用来分析各种滤波器的特性。可以是用2D离散傅里叶变换分析图像的频域特性。

(个人理解,在图像问题当中,频域是指图像的灰度变化,也就是灰度图像的梯度值,这个和轮廓的原理差不多,灰度值变化剧烈的叫做高频分量,例如边界和噪声。灰度值变化缓慢的称谓低频分量)

实现2D离散傅里叶变换(DFT)的的算法叫做快速傅里叶变换(FFT)。

对图像进行X方向和Y方向的傅里叶变换,会得到图像的频域表示图。

直观理解,一个正弦信号,如果幅度变换很快,可以称之为高频信号,如果变换慢,可以称之为低频信号。在图像中,灰度值变化快的位置,可以称之为高频分量(只变化快而不是次数多),灰度值变化慢的称之为低频分量

图像使用使用二维离散傅里叶变换后得到一个复数矩阵,叫做图像的频谱图。

低通滤波器:只保留低频,会使得图像模糊

高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是从cv2.dftt()cv2.idft(),输入图像需要先转换成np.float32格式:

    img = cv2.imread(‘lena.jpg’, 0)

    img_ float32 = np.float32(img)

    dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置(故转换后的图像从中心向四周频率增高),可以通过shift变换来实现:

    dft_shift = np.fft.fftshift(dft)

  • cv2.dft()返回的结果是复数矩阵,即双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)

    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0],dft_shift[:, :, 1]))

img = cv2.imread('33.jpg',0)  # 读图
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)  # 傅里叶变换
dft_shift = np.fft.fftshift(dft)  # 平移到中心,结果为双通道(实部,虚部)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))  # 转化为频谱图

理解:通过傅里叶变换,将图像转化为频谱图,而低通滤波和高通滤波则是傅里叶变换的逆变换,即通过对频谱图进行一些操作(保留低频/保留高频),从而达到改变原始图像的效果。

低通滤波

作用:将图像变得平滑,同时也就看起来比较模糊。

做法:利用掩码,把中心部分频率低的保留下来

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./image/img1.jpg', 0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置

# 低通滤波制作蒙板
mask = np.zeros((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为0
mask[crow-30:crow+30, ccol-30:ccol+30] = 1  # 相当于只有中心位置60*60像素点是1,其余全为0

# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图(称为频谱图)变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,频谱图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

python数字图像处理基础(七)——直方图均衡化、傅里叶变换,数字图像处理,python,计算机视觉,开发语言

高通滤波

作用:增强边缘,非边缘部分被过滤

做法:使用一个60×60的矩形窗口进行蒙板操作,去除低频分量,使用函数np.fft.ifftshift将图像中心平移回左上角,然后使用函数 np.ifft2()进行FFT逆变换,将得到的复数结果取绝对值。(DFT的逆变换)

与低通滤波唯一的区别就在蒙版的制作

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('./image/img1.jpg', 0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置

# 高通滤波制作蒙板
mask = np.ones((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为1
mask[crow-30:crow+30, ccol-30:ccol+30] = 0  # 相当于只有中心位置60*60像素点是0,其余全为1

# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,模糊频率图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看

plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()

python数字图像处理基础(七)——直方图均衡化、傅里叶变换,数字图像处理,python,计算机视觉,开发语言

思想:将图像通过傅里叶变换映射到频域中进行操作,往往简单高效,最后再逆变换转化回来就好文章来源地址https://www.toymoban.com/news/detail-800303.html


到了这里,关于python数字图像处理基础(七)——直方图均衡化、傅里叶变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字图像处理实验(直方图均衡化&规定化)

    图像均衡化   图像均衡化是一种图像处理技术,它的目的是改善图像的对比度。   具体来说,对于一张图像,其直方图就是统计图像中各灰度级出现的次数的图像。通常情况下,图像的直方图会呈现不平衡的状态,即图像的某些灰度级出现的次数很多,而其它灰度级出现的

    2024年02月04日
    浏览(65)
  • Python-OpenCV中的图像处理-图像直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月12日
    浏览(71)
  • OpenCV-Python中的图像处理-图像直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月12日
    浏览(61)
  • Python-OpenCV中的图像处理-直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月13日
    浏览(75)
  • Python遥感图像处理应用篇036:GDAL+Scikit-image计算遥感图像梯度直方图HOG

    方向梯度直方图HOG(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功

    2024年02月11日
    浏览(49)
  • 数字图像处理实验(六)|图像分割{阈值分割、直方图法、OTUS最大类间方差法(edge、im2dw、imfilter、imresize)、迭代阈值法、点检测}(附matlab实验代码和截图)

    1 理解阈值分割的依据及确定阈值的方法; 2 掌握常用的边缘检测算子的使用方法,加深对不同算子优缺点的理解; 3 能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能; 1. 直方图法 测试图像:coins.png 原理:观察该图像的直方图,手动选取谷底点作为阈值对

    2024年02月05日
    浏览(61)
  • 【matlab图像处理】图像直方图操作和matlab画图

    中国史之【平王东迁】: 公元前771年,因镐京曾遭地震,残破不堪,又接近戎、狄等外患威胁,周平王遂在郑、秦、晋等诸侯的护卫下,将国都东迁至洛邑,东周历史由此开始。 ——来源:全历史APP 【路漫漫其修远兮,吾将上下而求索】 今天介绍图像的直方图操作以及用

    2024年02月04日
    浏览(44)
  • 我在Vscode学OpenCV 图像处理五(直方图处理)

    直方图是一种统计图,显示了图像中每个灰度级别(或颜色通道)的像素数量。通过分析图像的直方图,可以获得关于图像对比度、亮度和颜色分布等方面的重要信息。 了解图像的对比度、亮度和色彩分布等信息。你可以使用OpenCV中的函数来计算和绘制图像的直方图,从而进

    2024年01月21日
    浏览(77)
  • 【MATLAB图像处理】直方图均衡化

    直方图均衡化有以下几个好处: 增强图像对比度:直方图均衡化可以通过重新分配像素值来增强图像的对比度。这可以使得图像中的细节更加清晰可见,从而提高图像的质量和可读性。 均衡化图像亮度:直方图均衡化可以将图像的亮度均衡化,使得图像的整体亮度更加均匀

    2024年02月08日
    浏览(43)
  • FPGA图像处理仿真实验——直方图均衡化

    直方图均衡化实验,主要包括三部分,直方图统计、计算累加直方图、均衡化。 1、直方图统计        直方图统计就是记录每个灰度值在图片中出现的像素次数,灰度图片有0-255个灰度级,如果我们定义256个寄存器来存储数据比较麻烦,所以借用RAM来实现直方图统计。当输入

    2024年02月07日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包