YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪)

这篇具有很好参考价值的文章主要介绍了YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

YOLOv7姿态估计(pose estimation)是一种基于YOLOv7算法的姿态估计方法。该算法使用深度学习技术,通过分析图像中的人体关键点位置,实现对人体姿态的准确估计。

姿态估计是计算机视觉领域的重要任务,它可以识别人体的关节位置和姿势,从而为人体行为分析、动作识别、运动捕捉等应用提供基础支持。YOLOv7姿态估计算法通过端到端的训练和推理过程,能够快速、准确地检测和估计人体的姿态信息。

YOLOv7姿态估计算法的核心思想是将姿态估计问题转化为目标检测问题。它使用YOLOv7网络结构进行图像的目标检测,并在检测到的人体目标上进行关键点定位。通过预测人体关键点的位置,可以进一步计算出人体的姿态信息。

与传统的姿态估计方法相比,YOLOv7姿态估计算法具有以下优势:首先,它采用了YOLOv7的快速检测器,能够在保持高准确率的同时实现实时的姿态估计。其次,它使用了端到端的训练和推理过程,减少了传统方法中的多个阶段和复杂的流程,简化了算法的实现和应用。

YOLOv7姿态估计算法在人体姿态估计领域取得了显著的成果,并在一些人体行为分析、动作识别等应用中得到了广泛应用。它为计算机视觉领域的研究者和开发者提供了一种高效、准确的姿态估计解决方案。

总之,YOLOv7姿态估计是一种基于YOLOv7算法的快速、准确的姿态估计方法。它通过图像中的目标检测和关键点定位,实现对人体姿态的精确估计。该方法在计算机视觉领域有着广泛的应用前景,并为相关领域的研究和开发提供了重要的技术支持。

概述

YOLOv7姿态估计:一种快速准确的人体姿态估计模型

人体姿态估计是计算机视觉中的一项重要任务,具有各种应用,例如动作识别、人机交互和监控。近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。其中最流行的深度学习方法之一是YOLOv7姿态估计模型。

算法

YOLOv7姿态估计模型是YOLOv7目标检测模型的扩展,使用单个神经网络同时预测图像中多个物体的边界框和类别概率。在YOLOv7姿态估计模型中,网络预测每个人的关键点位置,从而可以用于估计人的姿态

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

网络

YOLOv7姿态估计模型基于深度卷积神经网络架构,由多个卷积层、最大池化和全连接层组成。网络接受输入图像并产生特征图,然后用于预测每个人的关键点位置。

 

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

数据集

YOLOv7姿态估计模型使用大型数据集进行训练,例如COCO(通用对象上下文)和MPII(马克斯·普朗克计算机科学研究所),这些数据集包含成千上万的人在各种姿势和环境中的注释图像。该模型使用监督学习和数据增强技术进行训练,例如随机缩放、旋转和平移输入图像。

 

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

优势

YOLOv7姿态估计模型的一个关键优势是其速度和准确性。该模型能够实时估计多个人的姿态,使其适用于人机交互和监控等应用。此外,该模型在COCO和MPII等基准数据集上实现了最先进的性能,展示了其准确性和鲁棒性。

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

结论


总之,YOLOv7姿态估计模型是一种快速准确的基于深度学习的人体姿态估计模型。其能够实时估计多个人的姿态,使其适用于各种应用,而其在基准数据集上的最先进性能证明了其有效性。随着深度学习的不断发展,我们可以预期在人体姿态估计方面会有进一步的改进,而YOLOv7姿态估计模型很可能在这些发展中发挥重要作用。

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

代码 
#全部代码可私信或者qq1309399183
def run(poseweights="yolov7-w6-pose.pt",source="football1.mp4",device='cpu',view_img=False,
        save_conf=False,line_thickness = 3,hide_labels=False, hide_conf=True):

    frame_count = 0  #count no of frames
    total_fps = 0  #count total fps
    time_list = []   #list to store time
    fps_list = []    #list to store fps
    
    device = select_device(opt.device) #select device
    half = device.type != 'cpu'

    model = attempt_load(poseweights, map_location=device)  #Load model
    _ = model.eval()
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
   
    if source.isnumeric() :    
        cap = cv2.VideoCapture(int(source))    #pass video to videocapture object
    else :
        cap = cv2.VideoCapture(source)    #pass video to videocapture object
   
    if (cap.isOpened() == False):   #check if videocapture not opened
        print('Error while trying to read video. Please check path again')
        raise SystemExit()

    else:
        frame_width = int(cap.get(3))  #get video frame width
        frame_height = int(cap.get(4)) #get video frame height

        
        vid_write_image = letterbox(cap.read()[1], (frame_width), stride=64, auto=True)[0] #init videowriter
        resize_height, resize_width = vid_write_image.shape[:2]
        out_video_name = f"{source.split('/')[-1].split('.')[0]}"
        out = cv2.VideoWriter(f"{source}_keypoint.mp4",
                            cv2.VideoWriter_fourcc(*'mp4v'), 30,
                            (resize_width, resize_height))

        while(cap.isOpened): #loop until cap opened or video not complete
        
            print("Frame {} Processing".format(frame_count+1))

            ret, frame = cap.read()  #get frame and success from video capture
            
            if ret: #if success is true, means frame exist
                orig_image = frame #store frame
                image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB) #convert frame to RGB
                image = letterbox(image, (frame_width), stride=64, auto=True)[0]
                image_ = image.copy()
                image = transforms.ToTensor()(image)
                image = torch.tensor(np.array([image.numpy()]))
            
                image = image.to(device)  #convert image data to device
                image = image.float() #convert image to float precision (cpu)
                start_time = time.time() #start time for fps calculation
            
                with torch.no_grad():  #get predictions
                    output_data, _ = model(image)

                output_data = non_max_suppression_kpt(output_data,   #Apply non max suppression
                                            0.25,   # Conf. Threshold.
                                            0.65, # IoU Threshold.
                                            nc=model.yaml['nc'], # Number of classes.
                                            nkpt=model.yaml['nkpt'], # Number of keypoints.
                                            kpt_label=True)
            
                output = output_to_keypoint(output_data)

                im0 = image[0].permute(1, 2, 0) * 255 # Change format [b, c, h, w] to [h, w, c] for displaying the image.
                im0 = im0.cpu().numpy().astype(np.uint8)
                
                im0 = cv2.cvtColor(im0, cv2.COLOR_RGB2BGR) #reshape image format to (BGR)
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh

                for i, pose in enumerate(output_data):  # detections per image
                
                    if len(output_data):  #check if no pose
                        for c in pose[:, 5].unique(): # Print results
                            n = (pose[:, 5] == c).sum()  # detections per class
                            print("No of Objects in Current Frame : {}".format(n))
                        
                        for det_index, (*xyxy, conf, cls) in enumerate(reversed(pose[:,:6])): #loop over poses for drawing on frame
                            c = int(cls)  # integer class
                            kpts = pose[det_index, 6:]
                            label = None if opt.hide_labels else (names[c] if opt.hide_conf else f'{names[c]} {conf:.2f}')
                            plot_one_box_kpt(xyxy, im0, label=label, color=colors(c, True), 
                                        line_thickness=opt.line_thickness,kpt_label=True, kpts=kpts, steps=3, 
                                        orig_shape=im0.shape[:2])

环境安装教程

#1.克隆项目并进入

#联系我:然后git clone my_projcet

 2.linux创建虚拟环境

python3 -m venv psestenv
source psestenv/bin/activate

3.如果windows用户请用这个:

python3 -m venv psestenv cd psestenv 
cd Scripts activate 
cd .. 
cd .. 
 pip install --upgrade pip

4.

  1. pip install
pip install -r requirements.txt

结果展示

更多视觉相关项目见专栏!。如果对你有用,欢迎私聊点赞交流

 

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪

 

YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪),YOLO,目标检测,目标跟踪文章来源地址https://www.toymoban.com/news/detail-800502.html

到了这里,关于YOLOv7姿态估计pose estimation(姿态估计-目标检测-跟踪)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计

    YOLOv8是一种先进的目标检测算法,结合多种算法实现多目标追踪、实例分割和姿态估计功能。该算法在计算机视觉领域具有广泛的应用。 首先,YOLOv8算法采用了You Only Look Once(YOLO)的思想,通过单次前向传递将目标检测问题转化为回归问题。它使用了深度卷积神经网络,能

    2024年02月20日
    浏览(47)
  • 3D视觉——1.人体姿态估计(Pose Estimation)入门——使用MediaPipe含单帧(Signel Frame)与实时视频(Real-Time Video)

    使用MediaPipe工具包进行开发 MediaPipe是一款由Google Research 开发并开源的多媒体机器学习模型应用框架,用于处理视频、音频等时间序列数据。这个跨平台架构使用于桌面/服务器、Android、iOS和嵌入式设备等。 我们使用MeidaPipe下的Solutions(方案特定的模型),共有16个Solutions: 人

    2024年01月18日
    浏览(50)
  • yolov8-pose姿态估计数据集制作(一)

    最近在搞yolo-pose姿态识别算法,现成的模型已经挺好用了,但是在某些特定的场景下,还是识别不准。所以想着自己搞搞数据,查了网上相关的博客,基本思路都是先按照coco格式来标,然后再转化成yolo格式。不废话,直接说咋干。 这里推荐使用CVAT,好用,没啥说。GitHub链接

    2024年02月11日
    浏览(44)
  • 基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)

    人体姿势骨架以图形格式表示人的方向。本质上,它是一组坐标,可以连接起来描述人的姿势。骨架中的每个坐标都被称为一个部分(或一个关节,或一个关键点)。两个部分之间的有效连接称为一对(或分支)。下面是一个人体姿势骨架样本。 因此,在本文中,我们将研究如何

    2024年02月11日
    浏览(43)
  • 【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】

    YOLOv8 是Ultralytics的最新版本YOLO。作为最先进的 SOTA 模型,YOLOv8 建立在以前版本成功的基础上,引入了新功能和改进,以增强性能、灵活性和效率。YOLOv8 支持全方位的视觉 AI 任务,包括 检测 、 分割 、 姿势估计 、 跟踪 和 分类 。这种多功能性使用户能够在不同的应用程序

    2024年02月06日
    浏览(43)
  • YOLOv5姿态估计:HRnet实时检测人体关键点

    前言: Hello大家好,我是Dream。 今天来学习一下 利用YOLOv5进行姿态估计,HRnet与SimDR检测图片、视频以及摄像头中的人体关键点 ,欢迎大家一起前来探讨学习~ 首先需要我们利用Pycharm直接克隆github中的姿态估计原工程文件,如果不知道怎样在本地克隆Pycharm,可以接着往下看,

    2024年01月17日
    浏览(68)
  • 计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)

    教程博客_传送门链接:链接 在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在 cs231n 上阅读有关迁移学习的更多信息。 本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题… 首先们要知道深

    2024年02月07日
    浏览(76)
  • 基于YOLOV7的openpose人体姿态检测识别,FPS可以达到“较高”的效果

    前不久yolov7(原yolov4团队)在yolov6(美团)开源不到两周的时间也更新了, 如下图所示,yolov7效果比前面的版本确实牛逼,在精度相同的情况下,速度上面提升了一大截,但是这是在比较好的设备上面; YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能

    2024年02月05日
    浏览(50)
  • 人体姿态估计技术的理解(Human Pose Estimination)

    本人毕设题目是人体姿态估计技术的相关课题,本人按照自己对人体姿态估计技术的学习和理解进行论述,如有不足,请大家指正!!! “姿势估计?……姿势这个词对不同的人可能有不同的含义,但我们不是在讨论阿诺德的经典作品、奥林匹亚或选美表演。那么,姿势估计

    2024年02月11日
    浏览(49)
  • YOLOv8 人体姿态估计(关键点检测) python推理 && ONNX RUNTIME C++部署

    目录   1、下载权重 ​编辑2、python 推理 3、转ONNX格式 4、ONNX RUNTIME C++ 部署 utils.h utils.cpp detect.h detect.cpp main.cpp CmakeList.txt 我这里之前在做实例分割的时候,项目已经下载到本地,环境也安装好了,只需要下载pose的权重就可以 输出:   用netron查看一下:  如上图所是,YOLO

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包