如何绘制出图像的色素分布直方图

这篇具有很好参考价值的文章主要介绍了如何绘制出图像的色素分布直方图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

效果

如图,可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗

如何绘制出图像的色素分布直方图,opencv,python,计算机视觉

实现可视化色素分布直方图方法

这里我们对我们的灰色图片和彩色图片进行了直方图显示

import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b')
plt.plot(hist2, color='r')
plt.show()

注意:记得下载

matplotlib包

上面代码里面的color='b'表示我们的直方图是蓝色的,这里可以用b代表blue

plt.plot(hist1, color='b', label='hist1')

如何绘制出图像的色素分布直方图,opencv,python,计算机视觉

运行结果

会出现这样一个程序

如何绘制出图像的色素分布直方图,opencv,python,计算机视觉

显示的直方图

如何绘制出图像的色素分布直方图,opencv,python,计算机视觉

扩展:给我们的直方图加上名字!

import cv2
import matplotlib.pyplot as plt
image = cv2.imread("test.jpg")
# 彩色图片->灰色图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# cv2.calcHist([图像], [通道数(灰度图是0)], mask(掩码图像,为none即可), histSize(bines数量), [ranges(像素范围)])
# histSize(bines数量) 表示的是横坐标尺寸
hist1 = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist2 = cv2.calcHist([image], [2], None, [256], [0, 256])
plt.plot(hist1, color='b',label='hist1')
plt.plot(hist2, color='r',label='hist2')
plt.legend()
plt.show()

加入了

plt.legend()
plt.plot里面加入了laber属性

效果:

如何绘制出图像的色素分布直方图,opencv,python,计算机视觉文章来源地址https://www.toymoban.com/news/detail-800635.html

到了这里,关于如何绘制出图像的色素分布直方图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【OpenCV • c++】直方图计算 | 绘制 H-S 直方图 | 绘制一维直方图 | 绘制 RGB 三色直方图

      直方图广泛应用于很多计算机视觉处理当中。通过标记帧与帧之间显著的边缘和颜色的变化,可以检测视频中的场景变化。在每个兴趣点设置一个有相似特征的直方图所构成的“标签”,可以用来标记各种不同的事情,比如图像的色彩分布,物体边缘梯度模板等等。是计

    2024年02月09日
    浏览(55)
  • OpenCV10-图像直方图:直方图绘制、直方图归一化、直方图比较、直方图均衡化、直方图规定化、直方图反射投影

    图像直方图就是统计图像中每个灰度值的个数,之后将灰度值作为横轴,以灰度值个数或者灰度值所占比率作为纵轴的统计图。通过直方图,可以看出图像中哪些灰度值数目较多,哪些较少,可以通过一定的方法将灰度值较为集中的区域映射到较为稀疏的区域,从而使图像在

    2024年01月16日
    浏览(53)
  • excel绘制直方图

    Excel 2016直方图使用指南 excel绘制各种曲线十分方便,可以通过代码将计算的数据输出到excel里面,然后通过excel的插入标签,绘制各种需要的曲线。 对于直方图,横坐标是分布区间,纵坐标是这个区间内数值的频数(也就是个数),通过直方图,可以直观的看出一组数据的分

    2024年02月10日
    浏览(49)
  • Python绘制直方图

    对于大量样本来说,如果想快速获知其分布特征,最方便的可视化方案就是直方图,即统计落入不同区间中的样本个数。 以正态分布为例 其中 bins 参数用于调控区间个数,出图结果如下 直方图函数的定义如下 除了 x 和 bins 之外,其他参数含义为 range 绘图区间,默认将样本

    2024年02月05日
    浏览(44)
  • Matlab绘制灰度直方图

    直方图是根据灰图像绘制的,而不是彩色图像通。查看图像直方图时候,需要先确定图片是否为灰度图,使用MATLAB2019查看图片是否是灰度图片,在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵,如果是,那么该图片是灰度图像,如果是,那么该图片是彩色图像。 通

    2024年02月11日
    浏览(64)
  • C++OpenCV下绘制灰度直方图

    C++OpenCV下绘制直方图 直方图的定义:灰度直方图是对一幅灰度图像素分布的统计。对于一幅8Bit量化的图像来说。就是统计在0~255各个灰度级上,像素点的个数或者密度。 在OpenCV库提供了 calcHist() 方法用于得到图像的直方图。 具体函数的调用方法如下: void cv::calcHist(const Ma

    2024年02月10日
    浏览(47)
  • Python 实例|matplotlib|绘制直方图(各参数样例)

    matplotlib.pyplot.hist 的官方文档:https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html 这个方法使用 numpy.histogram 首先将 x 中的数据分桶并统计每个桶中的元素数量,接着使用条形图绘制这个分布。 函数参数、含义及样例如下: 参数列表及样例 x : 数据集对象(必填) (n,) arr

    2024年02月07日
    浏览(51)
  • 百分位数、数据分布、直方图、正态数据分布

    目录 1、百分位数 2、数据分布 3、正态数据分布 统计学中使用百分位数(Percentiles)提供一个数字,该数字描述了给定百分比值小于的值。 例如:假设我们有一个数组,包含一时刻一条街上人的年龄 什么是 90 百分位数?答案是 61,这意味着 90% 的人是 61 岁或以下。 NumPy

    2024年02月06日
    浏览(40)
  • Python 直方图的绘制-`hist()`方法(Matplotlib篇-07)

    Python 直方图的绘制-【plt.hist()】(Matplotlib篇-08)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔

    2024年02月03日
    浏览(47)
  • Matlab论文插图绘制模板第43期—直方图(histogram)

    在之前的文章中,分享过很多 柱状图的Matlab绘制模板 : 这一次,来分享一种比较特殊的柱状图: 统计直方图 。 先来看一下 成品效果 : 特别提示 :Matlab论文插图绘制模板系列, 旨在降低大家使用Matlab进行科研绘图的门槛 ,只需按照模板格式添加相应内容,即可得到满足

    2024年02月15日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包