YOLOV5通道剪枝【附代码】

这篇具有很好参考价值的文章主要介绍了YOLOV5通道剪枝【附代码】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

之前的博客中已经实现了YOLOv4、YOLOR、YOLOX的剪枝,经过了几天的辛勤努力,终于实现了YOLOv5的剪枝。相关链接如下:

YOLOv4剪枝(剪枝相关细节理论这里有写):YOLOv4剪枝

YOLOX剪枝:YOLOX剪枝

YOLOR剪枝:YOLOR剪枝

Paper:Pruning Filters for Efficient ConvNets

说明:本文章仅仅是实现了针对v5的剪枝的方法,至于怎么剪,剪哪些层需要根据自己的需求以及数据集来,不保证最终效果。

有关YOLOv5其他资料如大家需要可以参考以下我的其他文章:

通过yaml修改YOLOv5网络

利用yaml自定义网络模型


本文章实现功能如下:

1.训练自己的数据集

2.对任意卷积层进行剪枝

3.剪枝后的训练

4.剪枝后的模型预测

代码:



1.训练自己的数据集

将自己制作好的数据集放在dataset文件下,目录形式如下:

dataset
|-- Annotations
|-- ImageSets
|-- images
|-- labels

Annotations是存放xml标签文件的images是存放图像的ImageSets存放四个txt文件【后面运行代码的时候会自动生成】,labels是将xml转txt文件。

1.运行makeTXT.py。这将会在ImageSets文件夹下生成  trainval.txt,test.txt,train.txt,val.txt四个文件【如果你打开这些txt文件,里面仅有图像的名字】。

2.打开voc_label.py,并修改代码 classes=[""]填入自己的类名,比如你的是训练猫和狗,那么就是classes=["dog","cat"],然后运行该程序。此时会在labels文件下生成对应每个图像的txt文件,形式如下:【最前面的0是类对应的索引,我这里只有一个类,后面的四个数为box的参数,均归一化以后的,分别表示box的左上和右下坐标,等训练的时候会处理成center_x,center_y,w, h】

0 0.4723557692307693 0.5408653846153847 0.34375 0.8990384615384616
0 0.8834134615384616 0.5793269230769231 0.21875 0.8221153846153847 

3.在data文件夹下新建一个mydata.yaml文件。内容如下【你也可以把coco.yaml复制过来】。

你只需要修改nc以及names即可,nc是类的数量,names是类的名字。

train: ./dataset/train.txt
val: ./dataset/val.txt
test: ./dataset/test.txt

# number of classes
nc: 1

# class names
names: ['target']

4.终端输入参数,开始训练。 

以yolov5s为例:

python train.py --weights yolov5s.pt --cfg models/yolov5s.yaml --data data/mydata.yaml

 
                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  4                -1  2    115712  models.common.C3                        [128, 128, 2]
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]
 24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]  
Model Summary: 270 layers, 7022326 parameters, 7022326 gradients, 15.8 GFLOPs

Starting training for 300 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
     0/299    0.589G    0.0779   0.03841         0         4       640:   6%|████▋                                                                    | 23/359 [00:23<04:15,  1.31it/s] 

看到以上信息就开始训练了。 

2.对任意卷积层进行剪枝

在利用剪枝功能前,需要安装一下剪枝的库。需要安装0.2.7版本,0.2.8有粉丝说有问题。剪枝时的一些log信息会自动保存在logs文件夹下,每个log的大小我设置的为1MB,如果有其他需要大家可以更改。

pip install torch_pruning==0.2.7

YOLOv5与我之前写过的剪枝不同,v5在训练保存后的权重本身就保存了完整的model,即用的是torch.save(model,...),而不是torch.save(model.state_dict(),...),因此不需要单独在对网络结构保存一次。 

模型剪枝代码在tools/prunmodel.py。你只需要找到这部分代码进行修改:我这里是以剪枝整个backbone的卷积层为例,如果你要剪枝的是其他层按需修改.included_layers内就是你要剪枝的层。

    """
    这里写要剪枝的层
    """
    included_layers = []
    for layer in model.model[:10]:
        if type(layer) is Conv:
            included_layers.append(layer.conv)
        elif type(layer) is C3:
            included_layers.append(layer.cv1.conv)
            included_layers.append(layer.cv2.conv)
            included_layers.append(layer.cv3.conv)
        elif type(layer) is SPPF:
            included_layers.append(layer.cv1.conv)
            included_layers.append(layer.cv2.conv)

 接下来在找到下面这行代码,amount为剪枝率,同样也是按需修改。【这里需要明白的一点,这里的剪枝率仅是对你要剪枝的所有层剪枝这么多,并不是把网络从头到尾全部剪,有些粉丝说我选了一层,剪枝率50%,怎么模型还那么大,没啥变化,这个就是他搞混了,他以为是对整个网络剪枝50%】。

pruning_plan = DG.get_pruning_plan(m, tp.prune_conv, idxs=strategy(m.weight, amount=0.8))

接下来调用剪枝函数,传入参数为自己的训练好的权重文件路径。

layer_pruning('../runs/train/exp/weights/best.pt')

 见到如下形式,就说明剪枝成功了,剪枝以后的权重会保存在model_data下,名字为layer_pruning.pt。

这里需要说明一下,保存的权重文件中不仅包含了网络结构和权值内容,还有优化器的权值,如果仅仅保存网络结构和权值也是可以的,这样pt会更小一点,我这里默认都保存是为了和官方pt格式一致。

-------------
[ <DEP: prune_conv => prune_conv on model.9.cv2.conv (Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=85072]
[ <DEP: prune_conv => prune_batchnorm on model.9.cv2.bn (BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=818]
[ <DEP: prune_batchnorm => _prune_elementwise_op on _ElementWiseOp()>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=0]
[ <DEP: _prune_elementwise_op => _prune_elementwise_op on _ElementWiseOp()>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=0]
[ <DEP: _prune_elementwise_op => prune_related_conv on model.10.conv (Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=104704]
190594 parameters will be pruned
-------------

2022-09-29 12:30:50.396 | INFO     | __main__:layer_pruning:75 -   Params: 7022326 => 3056461

2022-09-29 12:30:50.691 | INFO     | __main__:layer_pruning:89 - 剪枝完成

如果你仅仅就想剪一层,可以这样写:

included_layers = [model.model[3].conv] # 仅仅想剪一个卷积层

这样也可以检测出来效果图。

yolov5剪枝,剪枝,算法,人工智能

3.剪枝后的训练

这里需要和稀疏训练区别一下,因为很多人在之前项目中问我有没有稀疏训练。我这里的通道剪枝是离线式的,也就是针对已经训练好的模型进行剪枝,而边训练边剪枝是在线式剪枝,这个训练过程也就是稀疏训练,所以还是有区别的。

训练后的剪枝训练与训练部分是一样的,只不过加一个pt参数而已。命令如下:

python train.py --weights model_data/layer_pruning.pt --data data/mydata.yaml --pt 

4.剪枝后的模型预测

剪枝后的预测,和正常预测一样。

python detect.py --weights model_data/layer_pruning.pt --source [你的图像路径]

这里再说明一下!!本文章只是给大家造个轮子,具体最终的剪枝效果,需要根据自己的需求以及实际效果来实现,我对整个backbone剪枝80%后的微调训练反正是效果很不好,对SPPF后其他的层剪枝还稍微好点,网上也有很多人说对backbone剪枝效果不行。


代码:

GitHub - YINYIPENG-EN/Pruning_for_YOLOV5_pytorch

所遇问题:

1.剪枝后的微调训练中如果采用原来优化器中参数训练可能会报以下错误:

训练到一半报错:RuntimeError: The size of tensor a (512) must match the size of tensor b (103) at non-singleton dimension 1

解决办法:出现这种问题可能是由于原先用的SGD,但现在又用Adam训练;另一种是剪枝后由于网络结构发生了改变,原先优化器的一些参数无法加载进去,可以采用key所对应value的shape进行加载,或者采用默认权重进行训练,致于哪个效果好可以自行尝试。 文章来源地址https://www.toymoban.com/news/detail-801137.html

到了这里,关于YOLOV5通道剪枝【附代码】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 从0开始做yolov5模型剪枝

    【整个流程中,在正常train,sparityTrain,prune,finetune遇到10多个的问题,包括AttributeError、ModuleNotFoundError、RuntimeError、SyntaxError、TypeError等问题的解决方法,详见内容】 为了将现有模型移植到ARM平台,同时保证模型准确率的基础上,减少模型的算力消耗和推理时间。 之前有做

    2024年02月11日
    浏览(56)
  • 改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)

    2022.10.30 复现TPH-YOLOv5 2022.10.31 完成替换backbone为Ghostnet 2022.11.02 完成替换backbone为Shufflenetv2 2022.11.05 完成替换backbone为Mobilenetv3Small 2022.11.10 完成EagleEye对YOLOv5系列剪枝支持 2022.11.14 完成MQBench对YOLOv5系列量化支持 2022.11.16 完成替换backbone为EfficientNetLite-0 2022.11.26 完成替换backbone为

    2024年01月17日
    浏览(71)
  • yolov5s模型剪枝详细过程(v6.0)

    本文参考github上大神的开源剪枝项目进行学习与分享,具体链接放在文后,希望与大家多多交流! 在官方源码上训练yolov5模型,支持v6.0分支的n/s/m/l模型,我这里使用的是v5s,得到后将项目clone到本机上 cd进入文件夹后,新建runs文件夹,将训练好的模型放入runs/your_train/weigh

    2024年02月03日
    浏览(45)
  • Yolov5口罩佩戴实时检测项目(模型剪枝+opencv+python推理)

    如果只是想体验项目,请直接跳转到本文第2节,或者跳转到我的facemask_detect。 剪枝的代码可以查看我的github:yolov5-6.2-pruning 第1章是讲述如何得到第2章用到的onnx格式的模型文件(我的项目里直接提供了这个文件)。 第2章开始讲述如何使用cv2.dnn加载onnx文件并推理yolov5n模型

    2023年04月08日
    浏览(45)
  • Ubuntu20.04配置YOLOV5算法相关环境,并运行融合YOLOV5的ORB-SLAM2开源代码(亲测有效)

              这篇博客介绍的是如何在Ubuntu系统下配置YOLOV5算法环境。并且运行一个融合YOLOV5的ORB-SLAM2开源代码。         安装的软件主要是anaconda,然后anaconda可以帮我们安装python、pytorch这些东西。我的ubuntu版本:ubuntu20.04.5LTS。 安装的anaconda类型: Anaconda3-2022.05 安装的p

    2024年02月02日
    浏览(49)
  • 人工智能任务4-读懂YOLOv5模型的几个灵魂拷问问题,深度理解 YOLOv5模型架构

    大家好,我是微学AI,今天给大家介绍一下人工智能任务4-读懂YOLOv5模型的几个灵魂拷问问题,深度理解 YOLOv5模型架构。YOLOv5是一种高效且精确的目标检测模型,由ultralytics团队开发。它采用了轻量级的网络结构,能够在保持高性能的同时降低计算复杂度。模型由三个主要部分

    2024年01月16日
    浏览(46)
  • 人工智能图像识别分析之——Yolov5模型训练

    上一课讲述了Yolov5模型环境搭建的过程 这一课讲Yolov5模型训练的过程 进行模型训练前,首先要先进行样本标注,标注后产生标注文件,将图片源文件和标注文件进行文件划分,本文以2000张负样本进行训练。 1.新建三级目录datasets/images/train、datasets/images/val 2.新建三级目录da

    2024年02月01日
    浏览(75)
  • 改进YOLOv8/YOLOv5系列:助力涨点,魔改注意力,动态通道注意力模块DyCAConv,带改进描述

    在深度学习领域,尤其是计算机视觉任务中,神经网络需要捕捉图像中的多尺度特征以实现有效的特征表征。为了实现这一目标,研究人员不断开发新的模块和结构来改进神经网络的性能。通道注意力模块是一种有效的方法,旨在为每个通道分配权重,使网络关注更重要的通

    2023年04月25日
    浏览(60)
  • 【目标检测算法实现之yolov5】 一、YOLOv5环境配置,将yolov5部署到远程服务器上

    在官网:https://github.com/ultralytics/yolov5上下载yolov5源代码 下载成功如下: 在配置基础环境之前,提前压缩自己的代码文件,并通过winscp传输给linux端,传输之后,解压该文件。解压前,先创建一个文件夹,再解压。 winscp下载使用教程参考上一篇博客:使用WinSCP下载和文件传输

    2024年01月15日
    浏览(55)
  • CSDN独家《芒果YOLO改进高阶指南》适用YOLOv5、YOLOv7、YOLOv8等改进专栏,来自人工智能专家老师联袂推荐

    《芒果改进YOLO系列高阶指南》目录 💡该教程为芒果改进YOLO进阶指南专栏,属于 《芒果书》 📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀 💡🎈☁️:[CSDN原创《芒果改进YOLO高阶指南》推荐!] CSDN博客独家更新 出品: 专栏详情🔎:芒果改

    2023年04月17日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包