STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M

这篇具有很好参考价值的文章主要介绍了STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M

在中低容量存储领域,除了FLASH的使用,,还有铁电存储器FRAM的使用,相对于FLASH,FRAM写操作时不需要预擦除,所以执行写操作时可以达到更高的速度,其主要优点为没有FLASH持续写操作跨页地址需要变换的要求。相比于SRAM则具有非易失性, 因此价格方面会高一些。MB85RS2M是256K Byte(2M bit)的FRAM,能够按字节进行写入且没有写入等待时间。其管脚功能兼容FLASH:STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
这里介绍STM32 FATS文件操作方式访问FRAM MB85RS2M的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 SPI硬件电路实现读写操作,通过USB虚拟串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
配置硬件SPI接口:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
增加配置PA4作为SPI软件代码控制输出的片选管脚
并增加PA2和PA3连接到/WP和/HOLD管脚,并保持输出高电平:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
配置USB作为通讯口:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
对FATS文件系统进行配置:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
保存并生成初始工程代码:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL

STM32工程代码

USB虚拟串口的使用参考:STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

建立MB85RS2M.h头文件:

#ifndef INC_MB85RS2M_H_
#define INC_MB85RS2M_H_
#include "main.h"

/*To define operation code*/
#define WREN 0x06    //Set Write Enable Latch
#define WRDI 0x04    //Reset Write Enable Latch
#define RDSR 0x05    //Read Status Register
#define WRSR 0x01    //Write Status Register
#define READ 0x03    //Read Memory Code
#define WRITE 0x02   //Write Memory Code
#define RDID 0x9F    //Read Device ID

#define MB85RS2M_ID 0x03487F04

uint32_t MB85RS2M_ReadID(void);
uint8_t MB85RS2M_Init(void);
void MB85RS2M_Set_Write_Enable_Latch(void);
void MB85RS2M_Reset_Write_Enable_Latch(void);
void MB85RS2M_Write_Status_Register(uint8_t SRV);
uint8_t MB85RS2M_Read_Status_Register(void);
void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len);
void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len);

#endif /* INC_MB85RS2M_H_ */

建立MB85RS2M.c源文件:

//Written by Pegasus Yu in 2023

#include "MB85RS2M.h"
#include <string.h>

#define SPI1_CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define SPI1_CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)
extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);


uint32_t MB85RS2M_ReadID(void)
{
	uint8_t ftd[5];
	uint8_t frd[5];
	uint8_t Manufacturer_ID;
	uint8_t Continuation_Code;
	uint8_t Product_ID_L;
	uint8_t Product_ID_H;

	ftd[0]=RDID;


	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, ftd, frd, 5, 0xFFFFFFFF);

	SPI1_CS_H;

	Manufacturer_ID = frd[1];
	Continuation_Code = frd[2];
	Product_ID_L = frd[3];
	Product_ID_H = frd[4];

	return ((Product_ID_H<<24)|(Product_ID_L<<16)|(Continuation_Code<<8)|(Manufacturer_ID));
}

uint8_t MB85RS2M_Init(void)
{
	uint8_t st = 0;

	for(uint8_t i=0; i<4; i++)
	{
		if(MB85RS2M_ReadID()==MB85RS2M_ID)
		{
			st = 1;
			break;
		}

	}

	return st;

}


/*
 * WEL is reset after the following operations which means every write operation must follow once WREN operation MB85RS2M_Set_Write_Enable_Latch().
 * After power ON.
 * After WRDI command recognition.
 * At the rising edge of CS after WRSR command recognition.
 * At the rising edge of CS after WRITE command recognition.
 */
void MB85RS2M_Set_Write_Enable_Latch(void)
{
    uint8_t cmd = WREN;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Reset_Write_Enable_Latch(void)
{
    uint8_t cmd = WRDI;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS2M_Write_Status_Register(uint8_t SRV)
{
    uint8_t data[2];
    data[0] = WRSR;
    data[1] = SRV;

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;
}

uint8_t MB85RS2M_Read_Status_Register(void)
{
    uint8_t cmd[2];
    uint8_t data[2];
    uint8_t SRV;

    cmd[0] = RDSR;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;

	SRV = data[1];
	return SRV;

}

/*
 * wd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len)
{
    uint8_t data[len+4];
    data[0] = WRITE;
    data[1] = (uint8_t)(addr>>16);
    data[2] = (uint8_t)(addr>>8);
    data[3] = (uint8_t)addr;

    memcpy(data+4, wd, len);

    MB85RS2M_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, len+4, 0xFFFFFFFF);

	SPI1_CS_H;
}


/*
 * rd: data buffer pointer
 * addr: address to operate for MB85RS2M
 * len: data length to be written
 */

void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len)
{
    uint8_t cmd[len+4];
    uint8_t data[len+4];
    cmd[0] = READ;
    cmd[1] = (uint8_t)(addr>>16);
    cmd[2] = (uint8_t)(addr>>8);
    cmd[3] = (uint8_t)addr;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data , len+4, 0xFFFFFFFF);

	SPI1_CS_H;

	memcpy(rd, data+4, len);
}

USB接收命令的代码:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t cmd;
	cmd = Buf[0];

  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

对ffconf.h添加包含信息:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL

#include "main.h"
#include "stm32f4xx_hal.h"
#include "MB85RS2M.h"

修改user_diskio.c,对文件操作函数与底层I2C读写提供连接:

/* USER CODE BEGIN Header */
/**
 ******************************************************************************
  * @file    user_diskio.c
  * @brief   This file includes a diskio driver skeleton to be completed by the user.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
 /* USER CODE END Header */

#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/*
 * Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)
 * To be suppressed in the future.
 * Kept to ensure backward compatibility with previous CubeMx versions when
 * migrating projects.
 * User code previously added there should be copied in the new user sections before
 * the section contents can be deleted.
 */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif

/* USER CODE BEGIN DECL */

/* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "ff_gen_drv.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat = STA_NOINIT;

/* USER CODE END DECL */

/* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1
  DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1
  DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */

Diskio_drvTypeDef  USER_Driver =
{
  USER_initialize,
  USER_status,
  USER_read,
#if  _USE_WRITE
  USER_write,
#endif  /* _USE_WRITE == 1 */
#if  _USE_IOCTL == 1
  USER_ioctl,
#endif /* _USE_IOCTL == 1 */
};

/* Private functions ---------------------------------------------------------*/

/**
  * @brief  Initializes a Drive
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_initialize (
	BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{
  /* USER CODE BEGIN INIT */
	/**************************SELF DEFINITION PART************/
		  uint8_t res;
		  res = MB85RS2M_Init();

		  if(res) return RES_OK;
		  else return  STA_NOINIT;
	/**********************************************************/
/*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END INIT */
}

/**
  * @brief  Gets Disk Status
  * @param  pdrv: Physical drive number (0..)
  * @retval DSTATUS: Operation status
  */
DSTATUS USER_status (
	BYTE pdrv       /* Physical drive number to identify the drive */
)
{
  /* USER CODE BEGIN STATUS */
	/**************************SELF DEFINITION PART************/
		switch (pdrv)
			{
				case 0 :
					return RES_OK;
				case 1 :
					return RES_OK;
				case 2 :
					return RES_OK;
				default:
					return STA_NOINIT;
			}
	/**********************************************************/
	/*
    Stat = STA_NOINIT;
    return Stat;
    */
  /* USER CODE END STATUS */
}

/**
  * @brief  Reads Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data buffer to store read data
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to read (1..128)
  * @retval DRESULT: Operation result
  */
DRESULT USER_read (
	BYTE pdrv,      /* Physical drive nmuber to identify the drive */
	BYTE *buff,     /* Data buffer to store read data */
	DWORD sector,   /* Sector address in LBA */
	UINT count      /* Number of sectors to read */
)
{
  /* USER CODE BEGIN READ */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
					MB85RS2M_Read_Memory((uint8_t *)buff, sector, len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/**********************************************************/
    /*
    return RES_OK;
    */
  /* USER CODE END READ */
}

/**
  * @brief  Writes Sector(s)
  * @param  pdrv: Physical drive number (0..)
  * @param  *buff: Data to be written
  * @param  sector: Sector address (LBA)
  * @param  count: Number of sectors to write (1..128)
  * @retval DRESULT: Operation result
  */
#if _USE_WRITE == 1
DRESULT USER_write (
	BYTE pdrv,          /* Physical drive nmuber to identify the drive */
	const BYTE *buff,   /* Data to be written */
	DWORD sector,       /* Sector address in LBA */
	UINT count          /* Number of sectors to write */
)
{
  /* USER CODE BEGIN WRITE */
  /* USER CODE HERE */
	/**************************SELF DEFINITION PART************/
		    uint16_t len;
			if( !count )
			{
				return RES_PARERR;  /* count不能等于0,否则返回参数错误*/
			}
			switch (pdrv)
			{
				case 0:
					sector <<= 9; //Convert sector number to byte address
				    len = count*512;
					    MB85RS2M_Write_Memory((uint8_t *)buff, sector, len);
				    return RES_OK;
				default:
					return RES_ERROR;
			}
	/**********************************************************/
	/*
    return RES_OK;
    */
  /* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 */

/**
  * @brief  I/O control operation
  * @param  pdrv: Physical drive number (0..)
  * @param  cmd: Control code
  * @param  *buff: Buffer to send/receive control data
  * @retval DRESULT: Operation result
  */
#if _USE_IOCTL == 1
DRESULT USER_ioctl (
	BYTE pdrv,      /* Physical drive nmuber (0..) */
	BYTE cmd,       /* Control code */
	void *buff      /* Buffer to send/receive control data */
)
{
  /* USER CODE BEGIN IOCTL */
	/**************************SELF DEFINITION PART************/
             #define user_sector_byte_size 512
		     DRESULT res;
			 switch(cmd)
			    {
				    case CTRL_SYNC:
								res=RES_OK;
				        break;
				    case GET_SECTOR_SIZE:
				        *(WORD*)buff = user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_BLOCK_SIZE:
				        *(WORD*)buff = 4096/user_sector_byte_size;
				        res = RES_OK;
				        break;
				    case GET_SECTOR_COUNT:
				    	*(DWORD*)buff = (256*1024/512);
				        res = RES_OK;
				        break;
				    default:
				        res = RES_PARERR;
				        break;
			    }
				return res;
	/**********************************************************/
    /*
    DRESULT res = RES_ERROR;
    return res;
    */
  /* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */


然后在main.c里根据串口输入命令(16进制单字节)实现如下功能:
0x01. 读取FRAM ID
0x02. 装载FATS文件系统
0x03: 创建/打开文件并从头位置写入数据
0x04: 打开文件并从头位置读入数据
0x05: 创建/打开文件并从特定位置写入数据
0x06: 打开文件并从特定位置读入数据
完整的代码实现如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "MB85RS2M.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control

uint8_t FRAM_mount_status = 0; //FRAM fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operation

FRESULT retFRAM;
FIL file;
FATFS *fs;

UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20];      //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write

#define user_sector_byte_size 512
uint8_t FRAMbuffer[user_sector_byte_size];

extern char USERPath[4];
char * console;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
	FRAM_mount_status = 0;
	uint32_t FRAM_Read_Size;

    extern char USERPath[4];

    char * dpath = "0:"; //Disk Path
	for(uint8_t i=0; i<4; i++)
	{
		USERPath[i] = *(dpath+i);
	}

	const TCHAR* filepath = "0:test.txt";

	char cchar[256];
	console = cchar;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USB_DEVICE_Init();
  MX_SPI1_Init();
  MX_FATFS_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	     if(cmd==1) //Read ID
	     {
	    	 cmd = 0;
	    	 sprintf(console, "FRAM ID=MB85RS2MT\r\n\r\n");
	    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

	     }
	     else if(cmd==2) //FRAM File System Mount
	     {
	    	 cmd = 0;

	    	 retFRAM=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);
	    	    		 if (retFRAM != FR_OK)
	    	    		 {
	    	  	    	   sprintf(console, "File system mount failure: %d\r\n", retFRAM);
	    	  	    	   while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

	    	    		   if(retFRAM==FR_NO_FILESYSTEM)
	    	    		   {
	    	    		       sprintf(console, "No file system. Now to format......\r\n");
	    	    		       while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

	    	    			   retFRAM = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //FRAM formatting
	    	    			   if(retFRAM == FR_OK)
	    	    			   {
	    	         	    	  sprintf(console, "FRAM formatting success!\r\n");
	    	         	    	  while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
	    	    			   }
	    	    				else
	    	    			   {
	    	    			      sprintf(console, "FRAM formatting failure!\r\n");
	    	    			      while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
	    	    			   }

	    	    		   }
	    	    		 }
	    	    		 else
	    	    		 {
	    	    			 FRAM_mount_status = 1;
	    	    	    	 sprintf(console, "File system mount success\r\n");
	    	    	    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
	    	    		 }
	     }

		 else if(cmd==3) //File creation and write
		 {
				  cmd = 0;

				  if(FRAM_mount_status==0)
				  {
				    	 sprintf(console, "\r\nFRAM File system not mounted: %d\r\n",retFRAM);
				    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
				  }
				  else
				  {
						retFRAM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create file
						if(retFRAM == FR_OK)
						{
					    	sprintf(console, "\r\nFile open or creation successful\r\n");
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

							retFRAM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write data

							if(retFRAM == FR_OK)
							{
						    	 sprintf(console, "\r\nFile write successful\r\n");
						    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}
							else
							{
						    	 sprintf(console, "\r\nFile write error: %d\r\n",retFRAM);
						    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}

							f_close(&file);   //Close file
						}
						else
						{
					    	 sprintf(console, "\r\nFile open or creation error %d\r\n",retFRAM);
					    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
						}
				   }

	    }

	    else if(cmd==4) //File read
	    {
				  cmd = 0;

				  if(FRAM_mount_status==0)
				  {
				    	 sprintf(console, "\r\nFRAM File system not mounted: %d\r\n",retFRAM);
				    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
				  }
				  else
				  {
						retFRAM = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retFRAM == FR_OK)
						{
					    	 sprintf(console, "\r\nFile open successful\r\n");
					    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

							retFRAM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read data

							if(retFRAM == FR_OK)
							{
						    	sprintf(console, "\r\nFile read successful\r\n");
						    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

								PY_Delay_us_t(200000);

								FRAM_Read_Size = sizeof(rBuffer);
								for(uint16_t i = 0;i < FRAM_Read_Size;i++)
								{
							    	sprintf(console, "%d ", rBuffer[i]);
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
								}
						    	sprintf(console, "\r\n");
						    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}
							else
							{
						    	sprintf(console, "\r\nFile read error: %d\r\n", retFRAM);
						    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}
							f_close(&file); //Close file
						}
						else
						{
					    	sprintf(console, "\r\nFile open error: %d\r\n", retFRAM);
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
						}
				  }

		}

		else if(cmd==5) //File locating write
	    {
				  cmd = 0;

				  if(FRAM_mount_status==0)
				  {
				    	 sprintf(console, "\r\nFRAM File system not mounted: %d\r\n",retFRAM);
				    	 while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
				  }
				  else
				  {
						retFRAM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create file
						if(retFRAM == FR_OK)
						{
					    	sprintf(console, "\r\nFile open or creation successful\r\n");
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

							retFRAM=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locating

							if(retFRAM == FR_OK)
							{

								retFRAM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);
								if(retFRAM == FR_OK)
								{
							    	sprintf(console, "\r\nFile locating write successful\r\n");
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
								}
								else
								{
							    	sprintf(console, "\r\nFile locating write error: %d\r\n", retFRAM);
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
								}

							}
							else
							{
						    	sprintf(console, "\r\nFile pointer error: %d\r\n",retFRAM);
						    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}

							f_close(&file);   //Close file
						}
						else
						{
					    	sprintf(console, "\r\nFile open or creation error %d\r\n",retFRAM);
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
						}
				  }
		}

	    else if(cmd==6) //File locating read
		{
				  cmd = 0;

				  if(FRAM_mount_status==0)
				  {
				    	sprintf(console, "\r\nFRAM File system not mounted: %d\r\n",retFRAM);
				    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

				  }
				  else
				  {
						retFRAM = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open file
						if(retFRAM == FR_OK)
						{

					    	sprintf(console, "\r\nFile open successful\r\n");
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);

							retFRAM =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locating

							if(retFRAM == FR_OK)
							{
								retFRAM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);
								if(retFRAM == FR_OK)
								{
							    	sprintf(console, "\r\nFile locating read successful\r\n");
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
									PY_Delay_us_t(200000);

									FRAM_Read_Size = sizeof(rBuffer);
									for(uint16_t i = 0;i < FRAM_Read_Size;i++)
									{
								    	sprintf(console, "%d ",rBuffer[i]);
								    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
									}

							    	sprintf(console, "\r\n");
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
								}
								else
								{
							    	sprintf(console, "\r\nFile locating read error: %d\r\n",retFRAM);
							    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
								}
							}
							else
							{
						    	sprintf(console, "\r\nFile pointer error: %d\r\n",retFRAM);
						    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
							}
							f_close(&file);
						}
						else
						{
					    	sprintf(console, "\r\nFile open error: %d\r\n",retFRAM);
					    	while( CDC_Transmit_FS((uint8_t*)console, strlen(console)) == USBD_BUSY ) PY_Delay_us_t(1);
						}
				  }
	     }

	     PY_Delay_us_t(100);

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pins : PA2 PA3 PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
串口指令0x02测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
串口指令0x03测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
串口指令0x04测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
串口指令0x05测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL
串口指令0x06测试效果如下:
STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M,STM32,stm32,FATS,文件操作,SPI,FRAM,MB85RS2M,HAL

STM32例程下载

STM32F401CCU6 SPI总线FATS读写FRAM MB85RS2M例程下载

–End–文章来源地址https://www.toymoban.com/news/detail-802099.html

到了这里,关于STM32存储左右互搏 SPI总线FATS读写FRAM MB85RS2M的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡

    SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而电路和协议操作则是一样。这里介绍STM32CUBEIDE开发平台HAL库SPI总线操作SD/MicroSD/TF卡的例程。 除了在硬件

    2024年04月12日
    浏览(42)
  • 2023版 STM32实战11 SPI总线读写W25Q

    英文全称:Serial peripheral Interface 串行外设接口 -1- 串行(逐bit传输) -2- 同步(共用时钟线) -3- 全双工(收发可同时进行) -4- 通信只能由主机发起(一主,多从机) -1- CS片选一般配置为软件控制 -2- 片选低电平有效,从器件CS引脚可直接连接GND -3- 从机不能主动给主机发数据 -4- 主机想要

    2024年02月08日
    浏览(35)
  • 【STM32学习】——SPI通信协议&SPI时序&W25Q64存储芯片&软件SPI读写

    目录 前言 一、SPI通信协议 1.概述​ 2.硬件电路  3.移位示意图 二、SPI时序 1.时序基本单元 2.完整时序波形 三、W25Q64存储芯片 1.芯片简介  2.硬件电路引脚定义  3.芯片框图 4.Flash操作注意事项 四、软件SPI读写W25Q64 五、SPI通信外设 总结 声明:学习笔记来自江科大自化协B站教

    2024年02月09日
    浏览(58)
  • STM32-SPI通信(W25Q64芯片简介,使用SPI读写W25Q64存储器芯片)

    ​  SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)。 ​SPI通信具有以下特点: 同步,全双工; 支持总线挂载多设备(SPI仅支持一主多从); 在不

    2024年02月08日
    浏览(45)
  • 零死角玩转stm32中级篇3-SPI总线

    一.基础知识 1.什么是SPI SPI(Serial Peripheral Interface,串行外设接口)是一种同步的串行通信协议,它被用于在微控制器、存储器芯片、传感器和其他外围设备之间传输数据。SPI通常由四个线组成:时钟线(SCK)、主设备输出/从设备输入(MOSI)、从设备输出/主设备输入(MISO)

    2024年02月06日
    浏览(42)
  • STM32_SPI总线驱动OLED详细原理讲解

    目录 13.1.1 SPI总线介绍 SPI(Serial Peripheral interface):是由Motorola公司开发的串行外围设备接口,是一种高速的,全双工,同步的通信总线。主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器等器件。 UART:异步串行全双工 SPI:同步串行全双工

    2024年01月20日
    浏览(40)
  • arm学习stm32之spi总线数码管倒计时

    由于时间没有用时间计时器操作,有些误差,后续有空会翻新计时器版本 main.c spi.c spi.h

    2024年02月13日
    浏览(44)
  • stm32读写SD卡(SPI模式)

    目录 一、SD卡简介 二、源码下载 三、移植条件 1、芯片参数 2、硬件连接 四、驱动代码 1、依赖宏如下 2、驱动代码实现 3、测试代码 4、运行截图 SD卡有SD驱动模式和SPI驱动模式,本例中使用SPI模式驱动SD卡。 https://download.csdn.net/download/qq_30095023/88014550 1、芯片参数 芯片类型:

    2024年02月07日
    浏览(42)
  • arm学习stm32之spi总线数码管倒计时,裸机开发,soc

    由于时间没有用时间计时器操作,有些误差,后续有空会翻新计时器版本 main.c spi.c spi.h

    2024年02月16日
    浏览(45)
  • STM32开发_利用SPI协议读写SD卡、介绍SD卡SPI时序

    目录 一、​  SD卡引脚接口功能介绍 1.1 SD卡引脚接口图 1.2 SPI方式驱动SD卡介绍 1.3 开发板接口定义 二、MMC卡、SD卡介绍 2.1 SD卡和MMC两者间区别 2.2 SD卡版本说明 2.3 SD卡常用的指令表 三、向SD卡发送命令的步骤介绍(SendSDCardCmd) 3.1 取消选中SD卡(SDCardCancelCS) 3.2 选中SD卡(SDCardSele

    2024年02月16日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包