利用矩阵特征值解决微分方程【1】

这篇具有很好参考价值的文章主要介绍了利用矩阵特征值解决微分方程【1】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一. 特征值介绍

二. 单变量常微分方程

三. 利用矩阵解决微分方程问题

四. 小结

4.1 矩阵论

4.2 特征值与特征向量内涵

4.3 应用


一. 特征值介绍

线性代数有两大基础问题:

如果A为对角阵的话,那么问题就很好解决。需要注意的是,矩阵的基础行变换会改变特征值的大小。

在已知解的情况下,可以利用矩阵行列式解决问题。根据Cramer定则:

将以下矩阵的行列式看成一个多项式:

该多项式的根即为特征值。当矩阵维度较高时,这个方法就很难计算。

二. 单变量常微分方程

假定某函数为u(t),其中t为自变量,满足如下微分方程:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

回忆:

很容易求出该单变量常微分方程的解为:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

当a大于0,函数无界(unstable);当a等于0,函数为常函数(stable);当a小于0时,函数趋近于0(stable);

当a为复数时,如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

实数部分的分析与以上类似。虚数部分则会产生振荡,如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

三. 利用矩阵解决微分方程问题

给出以下常微分方程问题:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

因为初始条件都是t=0,所以这类问题又被称之为初值问题(initial value problem),其中初值在这个地方指的就是8和5。

如果将t看成时间的话,该问题的本质则是寻找v(t)和w(t),其中t大于0

一个常微分方程问题是怎么样跟矩阵联系在一起的呢?

首先,我们将两个未知的函数写成向量的形式,叫做u(t),如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

那么初始值则是u(0),如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

系数矩阵叫做A,如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

那么原始的两个微分方程则可以合并成一个向量形式的微分方程,如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

很明显这是一阶求导的方程,整个运算都是线性关系。系数均为常数结构,也就是矩阵A与时间t无关。

根据经验,v(t)和w(t)均为指数函数的结果,如果可以设两个函数的形式如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

将两者合并为向量形式,如下:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

很明显该结果满足我们想要的du/dt=Au的结构。将函数和带入原微分方程中,可得:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

可以发现这两个方程都出现了,可以直接约简。这个时候最神奇的地方就出现了,当约简完后,你会发现:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

这不就是特征值方程!形式如下:

该特征值方程A已知,和x未知。也就是为矩阵A的特征值,x为矩阵A的特征向量。接下来就可以直接利用我们熟悉的线性代数知识直接求解即可。

四. 小结

4.1 矩阵论

矩阵论是一个重要的数学分支,属于代数学范畴,需要抽象思维能力、数学建模能力以及科学计算能力。目前矩阵论的思想方法已经渗透到网络安全、经济管理以及军事学等各个领域,尤其是上世纪五六十年代以来,随着计算机科学技术的发展,网络工程、信息工程、测绘工程以及密码工程等各个专业都需要利用矩阵论课。矩阵论包括线性空间与线性变换、矩阵的范数理论、矩阵分析、矩阵分解、矩阵的特征值估计以及矩阵的广义逆等。

矩阵论有几个细节很重要,比如特征值理论线性空间线性变换矩阵运算多项式理论等,然后将其应用于行列式的计算矩阵的初等变换线性方程组解的判定和解的结构等。借助数值计算软件 matlab等,可以用来建立数学模型,然后构建算法,利用科学计算方法最终解决实际问题。

方阵的特征值与特征向量是一个重要的数学概念,在数据处理的统计方法、通信网络中的信息检索、图像压缩与恢复、机械振动等多个方面都有广泛的应用,例如,工程技术中的振动问题和稳定性问题,在数值上大都归结为矩阵的特征值与特征向量的问题。

4.2 特征值与特征向量内涵

矩阵的特征值和特征向量定义高度抽象,设 A 是 n 阶方阵,若存在数λ 和 n 维非零向量 x,使得 Ax = λx 成立,则称数λ 是方阵 A 的特征值,非零向量 x 为方阵 A 的特征向量。

这个时候可以引入谱分解定理。

设矩阵A可以做如下分解:

其中矩阵P的列是A的单位正交特征向量:

相应的特征值为:

可以将这n个特征值形成n阶的对角阵。因为矩阵P为单位正交矩阵,所以可得:

由此以上可得:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

由上述定义可知,方阵的特征向量是经过矩阵变换后,保持方向不变,只是进行长度扩大或者缩小的向量,而特征值反映了特征向量在矩阵变换时的扩大或者缩小的倍数。结合谱分解定理可得,一个方阵完全可以由它的特征向量表示,特征值即是方阵在对应特征方向上的贡献率大小,即一个方阵可由特征值与特征向量组成的“特征”来表示,特征向量的几何直观如图 下所示:

利用矩阵特征值解决微分方程【1】,信息论安全,矩阵,网络安全

4.3 应用

矩阵的各种分解形式为矩阵的科学计算提供了强有力的理论支撑,通过矩阵分解可以达到对矩阵进行降维的目的,从而减小内存量,简化运算。这时特征值与特征向量可以应用于图像压缩技术。

假定一幅图像有 m*n个像素,如果将这 mn 个数据一起传送,往往数据量会很大。因此,我们考虑在信息的发送端传送比较少的数据,并且在接收端利用这些传送数据对图像进行重构。这就是图像压缩的最初想法,不过图像压缩要求较高的压缩比,同时不产生失真。矩阵的奇异值分解可以将任意一个矩阵和一个只包含几个(非零)奇异值的矩阵对应。把“大”的矩阵对应到“小”的矩阵,这就产生了“压缩”的思想,并且利用矩阵的计算可以恢复压缩前的数据。文章来源地址https://www.toymoban.com/news/detail-802180.html

到了这里,关于利用矩阵特征值解决微分方程【1】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MATLAB矩阵的特征值与特征向量

    设A是n阶方阵,如果存在常数λ和n维非零列向量x,使得等式Ax = λx 成立,则称λ为A的特征值,x是对应特征值λ的特征向量。 在MATLAB中,计算矩阵的特征值与特征向量的函数是eig,常用的调用格式有两种: E = eig(A):求矩阵A的全部特征向量值,构成向量E。 [X,D] = eig(A):

    2024年02月11日
    浏览(41)
  • 5.1 矩阵的特征值和特征向量

    学习特征值和特征向量的定义和性质,我会采取以下方法: 1. 学习线性代数基础知识:特征值和特征向量是线性代数中的重要概念,需要先掌握线性代数的基础知识,例如向量、矩阵、行列式、逆矩阵、转置、内积、外积等基本概念。 2. 学习特征值和特征向量的定义:特征

    2024年02月02日
    浏览(54)
  • 矩阵分析:特征值分解

    伸缩 一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵: 因为这个矩阵M乘以一个向量(x,y)的结果是: 旋转 除了伸缩变换,也可以进行旋转变换。 上面的矩阵是对称的,所以这个变

    2023年04月24日
    浏览(44)
  • 特征值与相似矩阵

    应用:求幂,对角化,二次型,动力系统等等 通俗 ​ 向量α在矩阵A的线性变换作用下,保持方向不变,进行比例为λ的伸缩。 官方(注意是方阵) 特征方程 ​ (λE-A)α = 0 (α!=0)特征向量不能为0,但是 特征值可以为0或虚数 。方程中λ的次数应与A的 阶数相同 ,否则不是

    2024年02月06日
    浏览(53)
  • 线性代数中矩阵的特征值与特征向量

    作者:禅与计算机程序设计艺术 在线性代数中,如果一个$ntimes n$的方阵$A$满足如下两个条件之一: $A$存在实数特征值,即$exists xneq 0:Ax=kx$,其中$kin mathbb{R}$; $lambda_{max}(A)neq 0$($lambda_{max}(A)$表示$A$的最大特征值),且$||x_{lambda_{max}(A)}||=sqrt{frac{lambda_{max}(A)}{lambda_{

    2024年02月08日
    浏览(53)
  • 线性代数(8):特征值、特征向量和相似矩阵

            有矩阵 A 为 n 阶矩阵,Ax = λx ( λ 为一个实数,x为 n 维非零列向量 ),则称 λ 为方阵 A 的特征值, x 为特征向量; 1.2.1 公式         求特征值:使 | A - λE | = 0,其解的 λ 值即为矩阵 A 的特征值;         求特征向量: 使 ( A - λE )x = 0,设 x 为与 A 具有

    2024年02月11日
    浏览(51)
  • 线性代数(五) | 矩阵对角化 特征值 特征向量

    矩阵实际上是一种变换,是一种旋转伸缩变换(方阵) 不是方阵的话还有可能是一种升维和降维的变换 直观理解可以看系列超赞视频线性代数-哔哩哔哩_Bilibili 比如A= ( 1 2 2 1 ) begin{pmatrix}12\\\\21end{pmatrix} ( 1 2 ​ 2 1 ​ ) x= ( 1 2 ) begin{pmatrix}1\\\\2end{pmatrix} ( 1 2 ​ ) 我们给x左乘A实际

    2024年02月04日
    浏览(64)
  • 【证明】矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月09日
    浏览(46)
  • 从浅到深研究矩阵的特征值、特征向量

    本篇特征值、特征向量笔记来源于MIT线性代数课程。 对于方阵而言,现在要找一些特殊的数字,即特征值,和特殊的向量,即特征向量。 给定矩阵A,矩阵A作用在向量上,得到向量Ax(A的作用,作用在一个向量上,这其实就类似于函数,输入向量x,得到向量Ax) 在这些向量

    2024年02月12日
    浏览(48)
  • Java之矩阵求特征值

    } for(j=0;j=n;j++) { Matrix[j][k]+=temp*Matrix[j][i]; } } } } for(i=0;i=n;i++) { for(j=0;j=n;j++) { ret[i][j]=Matrix[i][j]; } } return n+1; } public static boolean EigenValue(double[][]Matrix,int n,int LoopNu,int Erro,double[][]Ret) { int i=Matrix.length; if(i!=n) { return false; } int j; int k; int t; int m; double[][]A=new double[n][n]; double erro=Math.po

    2024年04月27日
    浏览(25)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包