学习JavaEE的日子 day13补 深入类加载机制及底层

这篇具有很好参考价值的文章主要介绍了学习JavaEE的日子 day13补 深入类加载机制及底层。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深入类加载机制

学习JavaEE的日子 day13补 深入类加载机制及底层,学习JavaEE,类加载机制

初识类加载过程

使用某个类时,如果该类的class文件没有加载到内存时,则系统会通过以下三个步骤来对该类进行初始化

1.类的加载(Load) → 2.类的连接(Link) → 3.类的初始化(Initialize)

  • 类的加载(Load):将类的class文件读入内存,并为之创建一个java.lang.Class的对象,此过程由类加载器(ClassLoader )完成
  • 类的连接(Link):将类中的数据加载到各个内存区域中
  • 类的初始化(Initialize):JVM负责对类进行初始化

深入类加载过程

类的完整生命周期 :加载、连接(验证、准备、解析)、初始化、使用、卸载

  1. 加载

    1. 通过一个类的全限定名来获取其定义的二进制字节流

    2. 将这个字节流所代表的的静态存储结构转化为方法区的运行时数据结构

    3. 在堆中生成一个代表这个类的Class对象,作为方法区中这些数据的访问入口

    4. 注意: 相对于类加载过程的其他阶段而言,加载阶段是可控性最强的阶段,因为程序员可以使用系统的类加载器加载,还可以使用自己的类加载器加载,在这里我们只需要知道类加载器的作用就是上面虚拟机需要完成的三件事

  2. 连接

    1. 验证

      1. 文件格式的验证:验证.class文件字节流是否符合class文件的格式的规范,并且能够被当前版本的虚拟机处理

      2. 元数据验证:主要是对字节码描述的信息进行语义分析,以保证其描述的信息符合java语言规范的要求,比如说验证这个类是不是有父类,类中的字段方法是不是和父类冲突等等。

      3. 字节码验证:这是整个验证过程最复杂的阶段,主要是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。在元数据验证阶段对数据类型做出验证后,这个阶段主要对类的方法做出分析,保证类的方法在运行时不会做出威胁虚拟机安全的事。

      4. 符号引用验证:它是验证的最后一个阶段,发生在虚拟机将符号引用转化为直接引用的时候。主要是对类自身以外 (常量池中的各种符号引用) 的信息进行校验。目的是确保解析动作能够完成。

      5. 注意: 对整个类加载机制而言,验证阶段是一个很重要但是非必需的阶段,如果我们的代码能够确保没有问题,那么我们就没有必要去验证,毕竟验证需要花费一定的的时间。当然我们可以使用

        -Xverfty:none来关闭大部分的验证。

    2. 准备 - 重要

      准备阶段主要为类变量(static)分配内存并设置初始值。这些内存都在方法区分配。在这个阶段我们只需要注意两点就好了,类变量和初始值两个关键词:

      1. 类变量(static):会分配内存,但不会对应的分配值,其次实例变量不会分配空间,因为实例变量主要随着对象的实例化一块分配到java堆内存中

      2. 初始值:这里的初始值指的是数据类型默认值,而不是代码中被显示赋予的值

        比如1:public static int value = 1;

        在这里准备阶段过后的value值为0,而不是1赋值为1的动作在初始化阶段

        比如2:public static final int value = 1;

        同时被final和static修饰准备阶段之后就是1了,因为static final在编译器就将结果放入调用它的类的常量池中

    3. 解析

      解析阶段主要是虚拟机将常量池中的符号引用转化为直接引用的过程

      1. 符号引用:以一组符号来描述所引用的目标,可以是任何形式的字面量,只要是能无歧义的定位到目标就好,就好比在班级中,老师可以用张三来代表你,也可以用你的学号来代表你,但无论任何方式这些都只是一个代号(符号),这个代号指向你(符号引用)
      2. 直接引用:直接引用是可以指向目标的指针、相对偏移量或者是一个能直接或间接定位到目标的句柄。和虚拟机实现的内存有关,不同的虚拟机直接引用一般不同
      3. 补充: 解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符7类符号引用进行
    4. 初始化

      这是类加载机制的最后一步,在这个阶段,java程序代码才开始真正执行。在准备阶段已经为类变量赋过一次值。在初始化阶端,程序员可以根据自己的需求来赋值了。一句话描述这个阶段就是执行类构造器clinit()方法的过程。

      在初始化阶段,主要为类的静态(stitic)变量赋予正确的初始值,JVM负责对类进行初始化,主要对类变量(stitic)进行初始化。在Java中对类变量进行初始值设定有两种方式:

      1. 声明类变量是指定初始值
      2. 使用静态代码块为类变量指定初始值

      补充:clinit() 方法具有以下特点:

      1. 由编译器自动收集类中所有类变量(static)的赋值动作和静态语句块(static{} 块)中的语句合并产生的,编译器收集的顺序由语句在源文件中出现的顺序决定。特别注意的是,静态语句块只能访问到定义在它之前的类变量,定义在它之后的类变量只能赋值,不能访问。例如以下代码
      class Test {
      	static {
      		i = 0;                // 给变量赋值可以正常编译通过
      		System.out.print(i);  // 这句编译器会报错,提示“非法向前引用”
      	}
      	static int i = 1;
      }
      
      1. 与类的构造函数(或者说实例构造器 init())不同,不需要显式的调用父类的构造器。虚拟机会自动保证在子类的 clinit() 方法运行之前,父类的 clinit() 方法已经执行结束。因此虚拟机中第一个执行 clinit() 方法的类肯定为 java.lang.Object。由于父类的 clinit() 方法先执行,也就意味着父类中定义的静态语句块要优于子类的变量赋值操作。例如以下代码:
      public class Test {
      	public static void main(String[] args) {
      	     System.out.println(Son.B);//输出结果是父类中的静态变量A的值,也就是2
      	}
      }
      class Father{
          public static int A = 1;
          static {
          	System.out.println("a");
              A = 2;
          }
      }
      class son extends Father {
          public static int B = A;
          
      }
      
      1. clinit() 方法对于类或接口不是必须的,如果一个类中不包含静态语句块,也没有对类变量的赋值操作,编译器可以不为该类生成 clinit() 方法。

      2. 接口中不可以使用静态语句块,但仍然有类变量初始化的赋值操作,因此接口与类一样都会生成 clinit() 方法。但接口与类不同的是,执行接口的 () 方法不需要先执行父接口的 clinit() 方法。只有当父接口中定义的变量使用时,父接口才会初始化。另外,接口的实现类在初始化时也一样不会执行接口的 clinit() 方法。

      3. 虚拟机会保证一个类的 clinit() 方法在多线程环境下被正确的加锁和同步,如果多个线程同时初始化一个类,只会有一个线程执行这个类的 clinit() 方法,其它线程都会阻塞等待,直到活动线程执行 clinit() 方法完毕。如果在一个类的 clinit() 方法中有耗时的操作,就可能造成多个线程阻塞,在实际过程中此种阻塞很隐蔽。

      4. JVM初始化步骤:

        1. 假如这个类还没有被加载和连接,则程序先加载并连接该类
          2. 假如该类的直接父类还没有被初始化,则先初始化其直接父类
          3. 假如类中有初始化语句,则系统依次执行这些初始化语句
      5. 类初始化时机:

      只有当对类的主动使用的时候才会导致类的初始化,类的主动使用包括以下六种:

        1. 创建类的实例,也就是new的方式
      
        2. 访问某个类或接口的静态变量,或者对该静态变量赋值
      
        3. 调用类的静态方法
      
        4. 反射
      
        5. 初始化某个类的子类,则其父类也会被初始化
      
        6. Java虚拟机启动时被标明为启动类的类,直接使用 java.exe命令来运行某个主类
      

      比如:测试类Test

  3. 使用: 当 JVM 完成初始化阶段之后,JVM 便开始从入口方法开始执行用户的程序代码

  4. 卸载: 当用户程序代码执行完毕后,JVM 便开始销毁创建的 Class 对象,最后负责运行的 JVM 也退出内存

利用类加载过程理解面试题

public class Test {
	public static void main(String[] args) {
		A a = A.getInstance();
        System.out.println("A value1:" + a.value1);//1
        System.out.println("A value2:" + a.value2);//0

        B b = B.getInstance();
        System.out.println("B value1:" + b.value1);//1
        System.out.println("B value2:" + b.value2);//1
	}
}
class A{
    private static A a = new A();
    public static int value1;	
    public static int value2 = 0;

    private A(){
        value1++;
        value2++;
    }

    public static A getInstance(){
        return a;
    }
}
class B{
    public static int value1;
    public static int value2 = 0;
    private static B b = new B();

    private B(){
        value1++;
        value2++;
    }
    public static B getInstance(){
        return b;
    }

}

类加载器

类加载器实现的功能是即为加载阶段获取二进制字节流的时候,在 Java 虚拟机外部实现,以便让应用程序自己决定如何去获取所需要的类。

类加载器分类

从 Java 虚拟机的角度来讲,只存在以下两种不同的类加载器:

  1. 启动类加载器(Bootstrap ClassLoader):这个类加载器用 C++ 实现,是虚拟机自身的一部分
  2. 所有其他类的加载器,这些类由 Java 实现,独立于虚拟机外部,并且全都继承自抽象类 java.lang.ClassLoader

从 Java 开发人员的角度看,类加载器可以划分得更细致一些:

  1. 启动类加载器(Bootstrap ClassLoader): 最顶层的类加载器,负责加载 JAVA_HOME\lib 目录中的,或通过-Xbootclasspath参数指定路径中的,且被虚拟机认可(按文件名识别,如rt.jar)的类。
  2. 扩展类加载器(Extension ClassLoader)这个类加载器是由 ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的。 负责加载 JAVA_HOME\lib\ext 目录中的,或通过java.ext.dirs系统变量指定路径中的类库
  3. 应用程序类加载器(Application ClassLoader)这个类加载器是由 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的。 也叫做系统类加载器,可以通过getSystemClassLoader()获取,负责加载用户路径(classpath)上的类库。如果没有自定义类加载器,一般这个就是默认的类加载器。

类加载器之间的层次关系

启动类加载器 > 扩展类加载器 > 应用程序类加载器 > 自定义类加载器

public class ClassLoaderTest {
	
	public static void main(String[] args) {
		
		Thread thread = new Thread();
		
		ClassLoader appClassLoader = thread.getContextClassLoader();
		ClassLoader extClassLoader = appClassLoader.getParent();
		ClassLoader booClassLoader = extClassLoader.getParent();
		
        //sun.misc.Launcher$AppClassLoader@73d16e93
		System.out.println("应用程序类加载器:" + appClassLoader);
        //sun.misc.Launcher$ExtClassLoader@15db9742
		System.out.println("扩展类加载:" + extClassLoader);
        //null
		System.out.println("启动类加载器:" + booClassLoader);
        /*
			没有获取到ExtClassLoader的父Loader,原因是Bootstrap Loader(引导类加载器)是用C语			   言实现的,找不到一个确定的返回父Loader的方式,于是就返回null。
		*/
	}
}

双亲委派模型 - 概念

类加载器之间的这种层次关系叫做双亲委派模型。
双亲委派模型要求除了顶层的启动类加载器(Bootstrap ClassLoader)外,其余的类加载器都应当有自己的父类加载器。这里的类加载器之间的父子关系一般不是以继承关系实现的,而是用组合实现的。

双亲委派模型 - 工作过程

一个类加载器接受到类加载请求,他自己不会去加载这个请求,而是将这个类加载请求委派给父类加载器,这样一层一层传送,直到到达启动类加载器(Bootstrap ClassLoader)。
只有当父类加载器无法加载这个请求时,子加载器才会尝试自己去加载。

双亲委派模型 - 好处

使得 Java 类随着它的类加载器一起具有一种带有优先级的层次关系,从而使得基础类得到统一。

双亲委派模型很好的解决了各个类加载器加载基础类的统一性问题。即越基础的类由越上层的加载器进行加载

比如: java.lang.Object 存放在 rt.jar 中,如果编写另外一个 java.lang.Object 的类并放到 ClassPath 中,程序可以编译通过。因为双亲委派模型的存在,所以在 rt.jar 中的 Object 比在 Clas sPath 中的 Object 优先级更高,因为 rt.jar 中的 Object 使用的是启动类加载器,而 ClassPath 中的 Object 使用的是应用程序类加载器。正因为 rt.jar 中的 Object 优先级更高,因为程序中所有的 Object 都是这个 Object。

双亲委派原则

  1. 可以避免重复加载,父类已经加载了,子类就不需要再次加载
  2. 更加安全,很好的解决了各个类加载器的基础类的统一问题,如果不使用该种方式,那么用户可以随意定义类加载器来加载核心api,会带来相关隐患。

双亲委派模型的代码实现

双亲委派模型的代码实现集中在java.lang.ClassLoader的loadClass()方法当中

1. 检查类是否被加载,没有则调用父类加载器的loadClass()方法;

2. 若父类加载器为空,则默认使用启动类加载器作为父加载器;
3. 若父类加载失败,抛出ClassNotFoundException 异常后,再调用自己的findClass() 方法。 
//loadClass()源代码
protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
    //首先检查类是否被加载
    Class c = findLoadedClass(name);
    if (c == null) {//如果没有被加载
        try {
            if (parent != null) {//存在父类
             	//则调用父类加载器的loadClass()方法;
                c = parent.loadClass(name, false);
            } else {//不存在你父类
            	//则默认使用启动类加载器作为父加载器;
                c = findBootstrapClass0(name);
            }
        } catch (ClassNotFoundException e) {
           //若父类加载失败,抛出ClassNotFoundException异常后
           //调用自身的加载功能,一般自定义类重写此方法
           c = findClass(name);
        }
    }
    if (resolve) {//是否初始化
        //再调用自己的findClass() 方法。
        resolveClass(c);
    }
    return c;
}

自定义类加载器

首先,我们定义一个待加载的普通Java类:Test.java。放在com.dream.test包下:

package com.dream.test;

public class Person {
    
	private String name;

	public Person() {}

	public Person(String name) {
		this.name = name;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	@Override
	public String toString() {
		return "Person [name=" + name + "]";
	}
}

注意:

如果你是直接在当前项目里面创建,待Test.java编译后,请把Test.class文件拷贝走,再将Test.java`删除。因为如果Test.class存放在当前项目中,根据双亲委派模型可知,会通过sun.misc.Launcher$AppClassLoader类加载器加载。为了让我们自定义的类加载器加载,我们把Test.class文件放入到其他目录。

在本例中,我们Person.class文件存放的目录如下: C:\code\com\dream\test\Person.class

接下来就是自定义我们的类加载器 :

package com.dream.test;

import java.io.BufferedInputStream;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;

public class ClassLoadTest {

	public static void main(String[] args) throws Exception {
		
		//创建自定义类加载器对象
		MyClassLoader classLoader = new MyClassLoader("C:/code");
		//通过类的全路径获取该类的字节码文件对象
		Class<?> c = classLoader.loadClass("com.dream.test.Person");
		//创建对象
		Object obj = c.newInstance();
		
		System.out.println(obj);
		System.out.println(obj.getClass().getClassLoader());//com.dream.test.MyClassLoader@6d06d69c
	}
}

class MyClassLoader extends ClassLoader{
	
	private String classPath;

	public MyClassLoader(){}

	public MyClassLoader(String classPath) {
        this.classPath = classPath;
    }

	//将"com.dream.test.Person"转换为 Class对象	 
	@Override
	protected Class<?> findClass(String name) throws ClassNotFoundException {
		
		String replaceAll = name.replaceAll("\\.", "/");//com\dream\test\Person
		File file = new File(classPath,replaceAll + ".class");//C:\code\com\dream\test\Person.class
		
		try {
			//将文件转换为字节数组
			byte[] bytes = getClassBytes(file);
			
			//将字节数组转换为Class对象
			Class<?> c = this.defineClass(name,bytes, 0, bytes.length);
			return c;
		} catch (Exception e) {
			e.printStackTrace();
		}
		return super.findClass(name);
	}

	//读取xxx.class文件,把该文件的内容以字节数组返回
	public byte[] getClassBytes(File file) throws Exception{
		
		BufferedInputStream bis = new BufferedInputStream(new FileInputStream(file));
		ByteArrayOutputStream baos = new ByteArrayOutputStream();
		byte[] buf = new byte[1024];
		int len;
		while((len=bis.read(buf)) != -1){
			baos.write(buf, 0, len);
		}
		bis.close();
		return baos.toByteArray();
	}
}

自定义类加载器的应用场景

引入:Tomcat容器,每个WebApp有自己的ClassLoader,加载每个WebApp的ClassPath路径上的类,一旦遇到Tomcat自带的Jar包就委托给CommonClassLoader加载

  1. 加密:Java代码可以轻易的被反编译,如果你需要把自己的代码进行加密以防止反编译,可以先将编译后的代码用某种加密算法加密,类加密后就不能再用Java的ClassLoader去加载类了,这时就需要自定义ClassLoader在加载类的时候先解密类,然后再加载。
  2. 从非标准的来源加载代码:如果你的字节码是放在数据库、甚至是在云端,就可以自定义类加载器,从指定的来源加载类。

以上两种情况在实际中的综合运用:比如你的应用需要通过网络来传输 Java 类的字节码,为了安全性,这些字节码经过了加密处理。这个时候你就需要自定义类加载器来从某个网络地址上读取加密后的字节代码,接着进行解密和验证,最后定义出在Java虚拟机中运行的类。文章来源地址https://www.toymoban.com/news/detail-802437.html

到了这里,关于学习JavaEE的日子 day13补 深入类加载机制及底层的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 学习JavaEE的日子 day14 继承,super(),this(),重写

    理解:子类继承父类所有的属性和方法 使用场景:多个类似的类,有相同的属性和方法,就可以把相同属性和方法抽取到父类 优点:减少代码的冗余; 使类与类之间产生了关系(多态的前提) 缺点:继承会增加类与类之间的关系,会增加代码的维护难度 需求:编写中国人和日

    2024年01月21日
    浏览(51)
  • 学习JavaEE的日子 Day33 File类,IO流

    File是文件和目录路径名的抽象表示 File类的对象可以表示文件:C:UsersDesktophhy.txt File类的对象可以表示目录路径名:C:UsersDesktop File只关注文件本身的信息(文件名、是否可读、是否可写…),而不能操作文件里面的内容 对文件里的数据进行操作的是:IO流 需求1:通过程序

    2024年04月12日
    浏览(38)
  • Innodb底层原理与Mysql日志机制深入剖析

    大体来说,MySQL 可以分为 Server 层和存储引擎层两部分。 主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器

    2024年02月21日
    浏览(39)
  • 【Java】深入了解双亲委派机制(常说的类加载机制)

    ava虚拟机(JVM)的类加载机制是Java应用中不可或缺的一部分。本文将详细介绍JVM的双亲委派机制,并阐述各关键点。 双亲委派机制(Parent-Delegate Model)是Java类加载器中采用的一种类加载策略。该机制的核心思想是:如果一个类加载器收到了类加载请求,默认先将该请求委托

    2024年02月04日
    浏览(35)
  • 深入实现 MyBatis 底层机制的任务阶段4 - 开发 Mapper 接口和 Mapper.xml

    😀前言 在我们的自定义 MyBatis 底层机制实现过程中,我们已经深入研究了多个任务阶段,包括配置文件的读取、数据库连接的建立、执行器的编写,以及 SqlSession 的封装。每个任务阶段都为我们揭示了 MyBatis 内部工作原理的一部分,为构建完整的底层框架打下了坚实的基础

    2024年02月09日
    浏览(44)
  • 从类加载到双亲委派:深入解析类加载机制与 ClassLoader

    目录 在 Java 编程中,类加载是一个关键的技术点,它负责将类引入 Java 虚拟机(JVM)使得程序能够正确地加载、链接、初始化类;类加载的过程是 Java 程序执行的基础,它涉及从磁盘或网络上加载类的字节码,解析类的符号引用,最终将类加载到内存中供程序使用 类加载的

    2024年02月11日
    浏览(38)
  • JavaEE 初阶篇-深入了解多线程安全问题(指令重排序、解决内存可见性与等待通知机制)

    🔥博客主页: 【 小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录         1.0 指令重排序概述         1.1 指令重排序主要分为两种类型         1.2 指令重排序所引发的问题         2.0 内存可见性概述         2.1 导致内存可见性问题主要涉及两个方面      

    2024年04月15日
    浏览(45)
  • 【MySQL进阶-08】深入理解innodb存储格式,双写机制,buffer pool底层结构和淘汰策略

    MySql系列整体栏目 内容 链接地址 【一】深入理解mysql索引本质 https://blog.csdn.net/zhenghuishengq/article/details/121027025 【二】深入理解mysql索引优化以及explain https://blog.csdn.net/zhenghuishengq/article/details/124552080 【三】深入理解mysql的索引分类,覆盖索引(失效),回表,MRR https://bl

    2024年02月05日
    浏览(46)
  • 深入理解Java类加载机制中的双亲委派模型--根据源码探讨

    前言: 今天和大家探讨一道Java中经典的面试题,这道面试题经常出现在各个公司的面试中,本篇文章主要讲解 ava类加载机制中的双亲委派模型 的知识。该专栏比较适合刚入坑Java的小白以及准备秋招的大佬阅读。 如果文章有什么需要改进的地方欢迎大佬提出,对大佬有帮助

    2024年02月14日
    浏览(47)
  • 【深入浅出RocketMQ原理及实战】「底层原理挖掘系列」透彻剖析贯穿RocketMQ的消息消费长轮训机制体系的原理分析

    使用系统控制读取操作的DefaultMQPushConsumer可以自动调用传入的处理方法来处理收到的消息。通过设置各种参数和传入处理消息的函数,使用DefaultMQPushConsumer的主要目的是方便配置和处理消息。在收到消息后,系统会自动保存Offset,并且如果加入了新的DefaultMQPushConsumer,系统会

    2024年02月11日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包