深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)

这篇具有很好参考价值的文章主要介绍了深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1多维数组

a.shape=(3,2);既数组h=3,w=2
a.shape=(2,3,2);这里第一个2表示axis=0维度上的,三维数组中3,2)数组的个数,这里表示两个(3,2)数组。

压缩维度

  • 这里axis=0指代哪里是很重要的知识点。深度学习中经常压缩一个维度,axis=0。

numpy.squeeze()函数。

语法:numpy.squeeze(a,axis = None);作用是将shape维度为1的去掉,但通常我们会指定axis=0,去除batchsize的维度。

扩充维度

  • np.expand_dims(a, axis=1)将得到shape为(m, 1, n, c)的新数组,新数组中的元素与原数组a完全相同。
    np.expand_dims(a, axis=2)将得到shape为(m, n, 1, c)的新数组,新数组中的元素与原数组a完全相同。
    np.expand_dims(a, axis=3)将得到shape为(m, n, c, 1)的新数组,新数组中的元素与原数组a完全相同。
    ————————————————
    版权声明:本文为CSDN博主「dekiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/weixin_41560402/article/details/105289015

深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片),numpy,numpy,深度学习
深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片),numpy,numpy,深度学习

2numpy类型转换

深度学习常见的float32类型。

  • 函数

a.dtype = ‘float32’

>>> a = np.random.random(4)
>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)
>>> a.dtype = 'float32'
>>> a
array([  3.65532693e+20,   1.43907535e+00,  -3.31994873e-25,
         1.75549972e+00,  -2.75686653e+14,   1.78122652e+00,
        -1.03207532e-19,   1.58760118e+00], dtype=float32)
>>> a.shape
(8,)

3数组扁平化

假设C为三维数组
A = C.flatten()

4np.where()的用法

  • 一维数组,返回一个array
a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])
 
np.where(a>4)
(array([5, 6, 7], dtype=int64),)
  • 二维数组,返回两个array。返回的第一个array表示行坐标,第二个array表示纵坐标,两者一一对应。
b = np.arange(4*5).reshape(4,5)
 
b
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])
 
np.where(b>14)
(array([3, 3, 3, 3, 3], dtype=int64), array([0, 1, 2, 3, 4], dtype=int64))

5np.argmax()

作用:在axis方向上找最大值的坐标。

  • 语义分割中将多通道预测结果pred_mask转化为单通道mask
    np.argmax(pre_mask,axis=0)。即:在通道方向上找到哪个通道的置信度最大,比如1通道表示“汽车”,2“人”,3“猴子”,那么返回的索引值刚好对应label,将不同类别的像素点用不同颜色填充在原图上,这样就可以起到分割的效果。

6图像拼接

np.hstack h-horizontal 水平方向拼接

np.hstack(array1,array2)

np.vstack vertical 竖直方向拼接文章来源地址https://www.toymoban.com/news/detail-802640.html

np.vstack(array1,array2)

7生成同shape的图片,指定数据类型

# 以下是常用的两种类型
mask2 = np.zeros(b.shape, dtype=np.uint8) # 这个是cv读取的一般jpg、png的图片类型
dtype = np.int 
dtype = 'uint8'

到了这里,关于深度学习中Numpy的一些注意点(多维数组;数据类型转换、数组扁平化、np.where()、np.argmax()、图像拼接、生成同shape的图片)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构学习笔记——多维数组、矩阵

    数组是由n(n≥1)个 相同数据类型 的数据元素组成的有限序列,在定义数组时,会为数组分配一个固定大小的内存空间,用来存储元素,数组在被定义后,其维度不可以被改变。 数组在确定其维度和维界后,元素的个数是固定的,所以不能进行插入和删除运算。数组中最常

    2024年02月03日
    浏览(48)
  • 【深度学习】 Python 和 NumPy 系列教程(十五):Matplotlib详解:2、3d绘图类型(1):线框图(Wireframe Plot)

    目录  一、前言 二、实验环境 三、Matplotlib详解  1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 线框图(Wireframe Plot)         Python是一种高级编程语言,由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。Python具有丰富

    2024年02月08日
    浏览(43)
  • 【深度学习】 Python 和 NumPy 系列教程(廿四):Matplotlib详解:2、3d绘图类型(10)3D箱线图(3D Box Plot)

    目录 一、前言 二、实验环境 三、Matplotlib详解 1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 3D线框图(3D Line Plot) 2. 3D散点图(3D Scatter Plot) 3. 3D条形图(3D Bar Plot) 4. 3D曲面图(3D Surface Plot) 5. 3D等高线图(3D Contour Plot) 6. 3D向量场图(3D Vector Field Plot) 7. 3D表面投影图

    2024年02月03日
    浏览(46)
  • JAX: 快如 PyTorch,简单如 NumPy - 深度学习与数据科学

    JAX 是 TensorFlow 和 PyTorch 的新竞争对手。 JAX 强调简单性而不牺牲速度和可扩展性。由于 JAX 需要更少的样板代码,因此程序更短、更接近数学,因此更容易理解。 长话短说: 使用 import jax.numpy 访问 NumPy 函数,使用 import jax.scipy 访问 SciPy 函数。 通过使用 @jax.jit 进行装饰,可

    2024年02月03日
    浏览(61)
  • Linux学习笔记(3)一些数据类型

    1)_u32 是一个无符号的32位整数类型,它在 Linux 内核中定义为 typedef unsigned int __u32。其中,__u32 是为了避免名称冲突而定义的特殊类型。无符号整数是一种表示正整数的数据类型,其取值范围为 0 到 4294967295(2^32-1)。在网络编程中,经常使用 _u32 类型来存储 IP 地址、端口号

    2023年04月25日
    浏览(30)
  • 深度学习中实现PyTorch和NumPy之间的数据转换知多少?

    在深度学习中,PyTorch和NumPy是两个常用的工具,用于处理和转换数据。PyTorch是一个基于Python的科学计算库,用于构建神经网络和深度学习模型。NumPy是一个用于科学计算的Python库,提供了一个强大的多维数组对象和用于处理这些数组的函数。 在深度学习中,通常需要将数据从

    2024年02月05日
    浏览(44)
  • 【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)

    先前的大量研究表明,注意力机制在提高深度卷积神经网络(CNN)的性能方面具有巨大潜力。然而,大多数现有方法要么忽略通道和空间维度的建模注意力,要么引入更高的模型复杂性和更重的计算负担。为了缓解这种困境,在本文中,我们提出了一种轻量级且高效的多维协

    2024年03月18日
    浏览(76)
  • 【数据结构】——多维数组、矩阵以及广义表的相关习题

    1、数组通常具有的两种基本操作是()。 A、查找和修改 B、查找和索引 C、索引和修改 D、建立和删除 解析: (A) 基本操作是查找和修改,其中每个元素都可以通过其索引来访问,这是从数组的第一个元素开始计算的。除了访问和修改数组元素之外,还可以执行其他一些操

    2024年02月04日
    浏览(36)
  • (星型、雪花、星座、交叉连接)多维数据模型各种类型优劣分析

    在数据仓库的建设中,一般都会围绕着星型模型和雪花模型来设计表关系或者结构,同时从模型中又衍生出星座模型和交叉模型。下面我们先来理解这几种模型的概念和比较。 我们先来了解一下事实和维度。 事实,表示的是某一个业务度量。比如说订单的金额,订单中出售

    2024年02月07日
    浏览(60)
  • 数据分析 — Numpy 数组处理

    NumPy(Numerical Python)是一个用于 科学计算 的 Python 库,提供了多维数组对象(ndarray)以及数学函数,用于 处理大规模数据集和执行数值 计算。 当数据量达到一定级别后,NumPy 计算会比原生 Python 快。 Numpy 的主要对象是 同种元素 的多维数组。这是⼀个所有的元素都是⼀种类

    2024年02月22日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包