Clickhouse: One table to rule them all!

这篇具有很好参考价值的文章主要介绍了Clickhouse: One table to rule them all!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Clickhouse: One table to rule them all!,量化交易,clickhouse,quant,python

前面几篇笔记我们讨论了存储海量行情数据的个人技术方案。它们之所以被称之为个人方案,并不是因为性能弱,而是指在这些方案中,数据都存储在本地,也只适合单机查询。

数据源很贵 – 在这个冬天,我们已经听说,某些上了规模的机构,也在让员工共享万得账号了。所以,共享网络存储,从而只需要一个数据账号,就成为合理的需求。更不必说,集中管理才可能让 IT 来进行数据维护,而分析师只需要专注于策略就好。

那些以讹传讹的解决方案

都已经 2024 年了,但说到行情数据的存储,你仍然能看到推荐 mysql 的文章。这完全是错误的。不要说 mysql,就是 postgres 来了也不行。不要说 postgres,就是 sqlserver 甚至 oracle 来了都不行。

其它不 work 的方案还包括 mongodb。mongodb 是挺能装的,但是它不适合行情数据这类时序数据的查询。

Influxdb 是最早和最出名的时序数据库。但是它的社区版本性能还是偏弱,特别是它限制了查询的并发度。此外,它的引擎是 Go 语言,这仍然要比 C 慢好几倍。

Dolphinedb 可能性能上强于 Influxdb 不少,但缺点也是社区版对性能的限制太多。Tidb 据说性能不错,但我们没有机会评测过它。

不过如果有犹如王者般的 clickhouse 社区版摆在面前,还有什么必要去评估那些青铜呢?

Why click house is so f**ing fast?

Clickhouse 是战斗民族开发的产品。它的开发者是俄国的搜索引擎 Yandex!(提到 Yandex! 时,不能漏了这个感叹号)。搜索引擎天生要处理很多查询和统计分析,所以就催生了这个性能怪兽。


Clickhouse 的优化是全方位的。在硬件级别上,它利用了 SIMD CPU 指令。Clickhouse 特别强调他们使用了 SIMD 指令来进行并行优化,当你安装 clickhouse 时,它提供了一个检测工具,让你检测 SIMD 指令优化能否开启。

Clickhouse: One table to rule them all!,量化交易,clickhouse,quant,python

数据结构上,Clickhouse 使用了列存储,这一点,其实像 parquet, hdf5 都是这样存储的。基于列存储,就有很多很好的压缩方案可用,一旦存盘的数据量变小,显然易见 IO 效率也会提升。

但是它基于 merge-tree 的存储引擎,使得在查询上,不仅可以利用所有的 CPU 核和磁盘、还可以利用集群的所有 CPU 核和磁盘。这使得它的查询性能可以随硬件增加线性扩展。

Clickhouse: One table to rule them all!,量化交易,clickhouse,quant,python

在这一块,确实用了很多大数据的技巧,比如使用了 bloomfilter 的索引。它还留了一些优化技巧给使用者,这也是我们这篇笔记将要介绍的:如何设计一个能存储上百亿条行情数据的数据库,并达到最佳性能。

实战!先存一个小目标

尽管在 clickhouse 中,我们可以把分钟线与日线存在一张表里,但是考虑到我们几乎不可能同时取两个不同周期的数据,所以,把它们分别按表存储显然更合理。所以,我们在举例时,就只以分钟线为例:

CREATE TABLE if not exists bars_1m
(
    `frame` DateTime64 CODEC(Delta, ZSTD),
    `symbol` LowCardinality(String),
    `open` Float32 DEFAULT -1 CODEC(Delta, ZSTD),
    `high` Float32 DEFAULT -1 CODEC(Delta, ZSTD),
    `low` Float32 DEFAULT -1 CODEC(Delta, ZSTD),
    `close` Float32 DEFAULT -1 CODEC(Delta, ZSTD),
    `volume` Float64 DEFAULT -1 ,
    `money` Float64 DEFAULT -1 ,
    `factor` Float64 DEFAULT -1 CODEC(Delta, ZSTD)
)
ENGINE = MergeTree
ORDER BY (frame, symbol)

这里我们看到使用 clickhouse 的第一个好处。它完全兼容了 sql 的核心语法。要知道在设计 zillionare 2.0 版时我们被 influxdb 折磨的不行 – 天知道他们为什么抛弃了原先对 sql 的兼容,而独出心裁地设计了一种全新的查询语言!

这意味着如果我们在团队内安装了 clickhouse – 这常常是 IT 的活,分析师也就能直接上手 – 因为做数据分析的人,你们都是懂 sql 的。

这里有一些技巧,是普通的 SQL 中没有的。

首先是 frame 字段中的 CODEC(Delta, ZSTD) 压缩。它巧妙地通过行间数据的差值,将列数据转换成为一个稀疏的数据向量 – 这样可以大大减少存储空间和读取时间。实际上,在行情数据中,大量的时间戳都是相同的,或者只有很小的 delta。比如,如果我们把 5000 多支个股的分钟数据存入一张表,那么我们常常会看到连续 5000 个相同的时间戳,这些都可以存为 0!

OHLC 中的 default 值也给得颇有讲究。如果某天某个标的停牌,那么它的 OHLC 等数据就是空值。clickhouse 允许我们存空值。但这样一来,clickhouse 必须使用另外的文件来存储空值,并在查询时再通过 join 把空值连接起来。这会花掉一些时间。所以,这里我们使用了一个不可能的值作为默认值,这样所有的数据仍然存在一起,将会加快存储和运算速度。

OHLC 数据的变化都很小,所以我们也通过 DELTA 编码压缩它们。而成交量和成交额的跳动则可能很大,启用压缩就会得不偿失。

我们能做这些优化,是因为我们知道数据的分布特性 – 就像数据分析师也必须懂得数据的分布特性一样 – clickhouse 也是这样才能做好优化。

我们在 OHLC 数据上使用了单精度,但对 factor 却使用了 64 位浮点数。这是必要的,尽管看上去它们都很小,但是,OHLC 数据的取值范围很小,不会有精度问题,而 factor 数据则不一样,它必须更准确。
Clickhouse: One table to rule them all!,量化交易,clickhouse,quant,python

Symbol 字段我们也使用了一种优化。通过这种编码,我们实际上在存储 Symbol 时,存储的是整数而非字符串,这样会大大提高存储效率和查询速度。这个方法,如果你熟悉 Pandas 的性能优化,就应该已经见过了 – 它就是类似于 pandas 的 categorize 优化。

最后,我们把 frame 和 symbo 设为主键。我们的大多数查询将基于这样两个字段的比较。


我们设计的表,性能究竟怎么样?

让我们先分别存入 100 万条、1000 万条和 1 亿条数据,并且分别计算插入时间和查询时间。在准备数据时,我们使用了全随机的数据,这点很重要。如果我们都使用相同的数据,那么速度会快一些。

  • 写入 1 百万条数据,用时 8.3 秒,查询结果为 200 行时,用时 0.1 秒。
  • 写入 1 千万条数据,用时 77.7 秒,查询结果为 2000 行时,用时 0.7 秒。
  • 写入 1 亿条数据,用时 16 分钟左右,查询结果为 20200 行时,用时 13.7 秒。

这个结果已经很优秀了。但还看上去并没有超出预期,对吧?作为对比,我们在 influxdb 上,返回 100 万条记录时,花费 55 秒左右,其中网络传输和客户端重新组装数据占约 30 秒),这样看来,clickhouse在这一局很可能还没有超过influxdb。另外,在 1000 万级别下,优化到极致的 mysql 也能做到0.7秒以内的查询,不过它处理不了上亿条数据。

为什么没有惊喜?我去看了一下我的测试环境:

一个只有 8CPU,8GB 的虚拟机(当然底层是磁盘阵列),并且我已经开了 4 个 vscode 窗口,这样系统只剩下0.6GB的自由内存。我们测试Influxdb时,使用的是物理机,48CPU+96GB内存,总记录是30多亿条。

改天再找机会在同样的环境下进行对比测试。不过,clickhouse 员工已经在类似的行情数据库上进行了测试:

在一台 macbook pro 上,在 2.4 亿条记录中,进行 argmax 的查询,只用了 0.9 秒!这个速度虽然不够跑高频,但已足够多数场景下使用了。

不过,clickhouse 的测试与我们的测试有很大差别:

在 clickhouse 的测试中,它返回的数据量很小;而在我们的测试中,要求查询返回了 2 万条数据。

这是另一个优化方向。把能做的事情放到 clickhouse server 端做。也就是,很多因子的计算,之前我们需要取数据回 python 端再计算的,现在如果有可能,直接让 clickhouse 来做,我们只要结果。

这是我们后续笔记要发表的内容。

量化数据本地化方案全系列发布在大富翁量化网站的这个合集下,欢迎前往一次性读完!文章来源地址https://www.toymoban.com/news/detail-802917.html

到了这里,关于Clickhouse: One table to rule them all!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • How to boot the Raspberry Pi system from a USB Mass Storage Device All In One

    如何从 USB 启动树莓派引导系统 / 如何从 USB 大容量存储设备启动 Raspberry Pi 系统 First Stage Bootloader Second Stage Bootloader https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-boot-flow https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-bootloader-configuration BO

    2024年02月06日
    浏览(57)
  • How to fix the problem that Raspberry Pi cannot use the root user for SSH login All In One

    如何修复树莓派无法使用 root 用户进行 SSH 登录的问题 修改树莓派默认的 pi 用户名和密码后,需要使用 root 用户进行 SSH 登录; 对 pi/home 文件夹进行 备份 ,复制到新用户下 xgqfrms/home 备份后,要 删除 pi 用户, 必须切换到其他用户,毕竟 pi 用户不能自己删除自己呀!⚠️ 给

    2024年02月07日
    浏览(63)
  • linux开启防火墙后,Docker容器启动报错:ERROR: Failed to Setup IP tables: Unable to enable SKIP DNAT rule 解决办法

    目录 1、错误场景和现象 2、原因分析 3、解决办法 linux开启或重启防火墙后,创建docker自定义网络时 报错: [root@VM-16-5-centos home]# docker network create --driver bridge --subnet 192.168.0.0/16 --gateway 192.168.0.1 frayernet Error response from daemon: Failed to Setup IP tables: Unable to enable SKIP DNAT rule:  (ipta

    2024年02月12日
    浏览(45)
  • 【论文阅读】One For All: Toward Training One Graph Model for All Classification Tasks

    会议: 2024-ICLR-UNDER_REVIEW 评分:6,6,6,10 作者:Anonymous authors 文章链接:ONE FOR ALL: TOWARDS TRAINING ONE GRAPHMODEL FOR ALL CLASSIFICATION TASKS 代码链接:ONE FOR ALL: TOWARDS TRAINING ONE GRAPHMODEL FOR ALL CLASSIFICATION TASKS  设计一个能够解决多个任务的模型是人工智能长期发展的一个目标。最近,

    2024年01月18日
    浏览(52)
  • ClickHouse列存储(十一)—— ClickHouse

    1.数据库基本概念 2.列式存储 3.clickHouse存储设计 4.clickHouse典型应用场景 1、了解数据库基本概念 数据库 DBMS:数据库管理系统 OLTP 数据库 : OLTP(Online transactional processing) OLAP 数据库:OLAP (Online analytical processing) SQL (Structured Query Language) 词法分析 语法分析 AST (Abstract syntax t

    2024年02月10日
    浏览(43)
  • ClickHouse进阶(三):ClickHouse 索引

    进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术, IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 📌订阅:拥抱独家专题,你的订阅将点燃我的创作热情! 👍点赞:赞同优秀创作,

    2024年02月10日
    浏览(38)
  • ClickHouse--11--ClickHouse API操作

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 JDBC–01–简介 ClickHouse java代码 SparkCore 写入 ClickHouse,可以直接采用写入方式。下面案例是使用 SparkSQL 将结果存入 ClickHouse对应的表中。在 ClickHouse 中需要预先创建好对应的结果表 可以通过 Flink 原生

    2024年02月21日
    浏览(38)
  • ClickHouse基础知识(一):ClickHouse 入门

    ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的 列式存储数据库 (DBMS),使用 C++ 语言编写,主要用于 在线分析处理查询(OLAP) ,能够使用 SQL 查询实时生成分析数据报告。 以下面的表为例: 1)采用行式存储时,数据在磁盘上的组织结构为: 好处是想查某个人所有的属性时,

    2024年02月03日
    浏览(41)
  • clickhouse 系列2:clickhouse 离线安装

    https://download.csdn.net/download/shangjg03/88353547 /etc/clickhouse-server : 服务端的配置文件目录,包括全局配置config.xml 和用户配置users.xml。 /var/lib/clickhouse : 默认的数据存储目

    2024年02月11日
    浏览(39)
  • 基于clickhouse keeper搭建clickhouse集群

    主机名 IP my-db01 192.168.1.214 my-db02 192.168.1.215 my-db03 192.168.1.216 hosts设置 使用 admin 用户安装: 添加官方镜像 安装 clickhouse-server和clickhouse-client 版本信息: 操作系统:CentOS Linux release 7.9.2009 (Core) systemd:219 clickhouse-client:23.2.4.12-1.x86_64 clickhouse-server:23.2.4.12-1.x86_64 clickhouse-commo

    2024年02月12日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包