c++--stack,queue,priority_queue

这篇具有很好参考价值的文章主要介绍了c++--stack,queue,priority_queue。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

        对于栈和队列我们是不陌生的,在数据结构阶段已经学习过,记得当时我们还是用c语言将它一步一步造出来,因为压栈与出栈正好满足数组的尾插与头删,数组的代价是及小的。对于队列是头出队列,尾插。所以就栈的实现就用的数组,队列实现就用链表。在c++中呢,vector和list就完美解决。priority_queue叫优先级队列,实质就是大小堆,堆的实现就是数组。

在很多时候stack,queue,priority_queue他们都叫做适配器,这里简单的提一下,它们就好比是农夫山泉,不生产水,是大自然的搬运工。也就意味着它“不生产代码,只是代码的搬运工”。下面我们通过底层代码的实现,就能看出这一特性。


目录

前言

一、stack-栈

1.1 stack的使用

 1.2stack的模拟实现

二、queue-队列

2.1queue的使用

2.2queue的模拟实现

2.3容器适配器

三、deque

3.2deque的原理介绍

3.3deque--插入

3.4deque的接口

四、priority_queue-优先级队列

4.1priority_queue的使用

4.2模拟实现

​编辑

五、仿函数/函数对象

5.1仿函数的实现

5.2仿函数的使用

5.2仿函数的用法(进阶版)



一、stack-栈

stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++


1.1 stack的使用

下面这些接口的使用我相信大家已经是游刃有余了,这里就不用过多演示,若不熟悉查文档即可。

函数说明 接口说明
stack() 构造空的栈
empty() 检测stack是否为空
size() 返回stack中元素的个数
top() 返回栈顶元素的引用
push() 将元素val压入stack中
pop() 将stack中尾部的元素弹出
void test_stack()
{
	stack<int> s;
	s.push(1);
	s.push(2);
	s.push(3);
	s.push(4);

	while (!s.empty())
	{
		cout << s.top() << " ";
		s.pop();
	}

}

 1.2stack的模拟实现

对stack的实现,现在只关注它的实现全是调用。关于deque,Container下面我们就会进行探究。

#pragma once
#include<vector>
#include <list>

namespace qhx
{

	template<class T, class Container = deque<T>>
	class stack
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}

		void pop()
		{
			_con.pop_back();
		}

		const T& top()
		{
			return _con.back();
		}

		bool empty()
		{
			return _con.empty();
		}

		size_t size()
		{
			return _con.size();
		}
	private:
		Container _con;
	};
}

二、queue-队列

队列也是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++


2.1queue的使用

队列的接口其实与栈的接口基本一样,而且使用方法也是一样。

函数声明 接口说明
queue() 构造空的队列
empty() 检测队列是否为空,是返回true,否则返回false
size() 返回队列中有效元素的个数
front() 返回队头元素的引用
back() 返回队尾元素的引用
push() 在队尾将元素val入队列
pop() 将队头元素出队列
void test_queue()
{
	queue<int> q;
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);

	while (!q.empty())
	{
		cout << q.front() << " ";
		q.pop();
	}
	cout << endl;
}

2.2queue的模拟实现

#pragma once
#include<vector>
#include <list>

namespace qhx
{
	
	template<class T, class Container = deque<T>>
	class queue
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}

		void pop()
		{
			_con.pop_front();
		}

		const T& front()
		{
			return _con.front();
		}

		const T& back()
		{
			return _con.back();
		}

		bool empty()
		{
			return _con.empty();
		}

		size_t size()
		{
			return _con.size();
		}
	private:
		Container _con;
	};
}

queue的模拟实现也是非常简单的,都是复用其他人代码。栈和队列的实现中,我们发现都有class Container = deque<T>。

在queue和stack中都有这样一段话。

Queue:

queues are a type of container adaptor, specifically designed to operate in a FIFO context (first-in first-out), where elements are inserted into one end of the container and extracted from the other.
翻译:

队列是一种容器适配器,专门设计用于在 FIFO 上下文(先进先出)中运行,其中元素插入容器的一端并从另一端提取。

Stacks:

Stacks are a type of container adaptor, specifically designed to operate in a LIFO context (last-in first-out), where elements are inserted and extracted only from one end of the container.

翻译:

堆栈是一种容器适配器,专门设计用于在后进先出(后进先出)环境中操作,其中元素仅从容器的一端插入和提取。

class Container = deque<T>在这里就是容器适配器。

2.3容器适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

设计模式的使用将提高软件系统的开发效率和软件质量,节省开发成本。有助于初学者深入理解面向对象思想,设计模式使设计方案更加灵活,方便后期维护修改。

在stack,queue中 deque<T>接口转换到Container中。deque是什么呢?我们不是说stack可以用vector,queue用list吗,怎么这里用的deque。

三、deque

在容器适配器为什么会选择deque,那么就必须得从vector,list的优缺点说起


3.1vector,list的优缺点

vector:

stack可以随机访问,但是头部中部插入删除效率低,并且还需要扩容

list:

虽然queue在任何地方插入删除效率高,但是不支持随机访问,CPU高速缓存命中率低

对于deque就完美兼容vector,list的优点。所以对于接口选择就是deque。

3.2deque的原理介绍

deque文档

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和 删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

这个是deque一段的buffer数组,所以deque并不是真正连续的空间,它是由一段一段这样的buffer数组链接而成,一段一段的buffer数组被放在中控,这个中控就是一个指针数组,实际上deque类似于一个动态的二维数组, 如图:10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

这里的缓冲区就是buffer数组,用于存放数据。map就是中控器,就是存放指针。当map空间不够后,会再开辟一个中控-map。

3.3deque--插入

插入操作--头插10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

插入操作--尾插 

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

查找:即相当于二维数组一样,先找map中的地址(第一层),然后在找buffer(第二层)

缺点:

那么我们发现它下标访问有一定的消耗,没有vector快。当我们中间插入时候,它的中间插入的时候需要挪动数据,与list相比也是有消耗的。

deque不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到 某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作 为stack和queue的底层数据结构。

我们通过发现deque其实是没有想象中那样完美的,它与vector和list相比是不够极致的。vector是吕布,list是诸葛亮,那么deque就是魏延。所以更多的时候我们更需要极致。

deque的底层实现是比较复杂的,不仅仅是上诉简单两句的问题。

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

根据上图,对于deque的维护是通过两个迭代器,start和finsh。因为daque是作为stack和queue的底层默认容器,一般来说deque是不需要进行中间插入的,那么start和finsh就很好的处理头插和尾插。它通过frist和last指向头尾,头插通过start的frist,如果满了node链接map新开辟buffer的指针位置。尾插通过finish的last控制。如果top()和back(),即通过start的cur和finish的cur控制。、

3.4deque的接口

 deque文档的接口10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

 通过stack,queue的接口与deque的接口对比,发现直接调用deque是非常适合充当stack,queue的默认容器。stack,queue就是直接调用deque的接口。

四、priority_queue-优先级队列

优先队列是一种容器适配器,而它实质就是堆。是否还记得堆是完全二叉树中用数组实现的,因为数组正好满足堆下标随机存取的需求,标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。相对deque,vector更加极致。priority_queue是默认大根堆。


4.1priority_queue的使用

priority_queue的使用来说也是比较简单的,接口也比较少。

函数声明 接口说明
priority_queue()/priority_queue(first, last) 构造一个空的优先级队列
empty( )

检测优先级队列是否为空,是返回true,否则返回

false

top( ) 返回优先级队列中最大(最小元素),即堆顶元素
push(x) 在优先级队列中插入元素x
pop() 删除优先级队列中最大(最小)元素,即堆顶元素

对于priority_queue的头文件,我们通过手册发现,priority_queue与queue都是一个头文件。

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

 接口演示:

//默认大根堆
void test()
{
	priority_queue<int> p;
	p.push(7);
	p.push(1);
	p.push(9);
	p.push(2);
	p.push(3);
	p.push(4);

	while (!p.empty())
	{
		cout << p.top() << " ";
		p.pop();
	}
}

结果:9 7 4 3 2 1

小根堆 --greater

void test()
{
	priority_queue<int, vector<int>, greater<int> > p;
	p.push(7);
	p.push(1);
	p.push(9);
	p.push(2);
	p.push(3);
	p.push(4);

	while (!p.empty())
	{
		cout << p.top() << " ";
		p.pop();
	}
}

结果:1 2 3 4 7 9

4.2模拟实现

#pragma once

namespace qhx
{
	template <class T,class Container = vector<int>>
	class priority_queue
	{
	public:
		template<class InputIterator>
		priority_queue(InputIterator first, InputIterator last)
			:_con(first,last)
		{
			//建堆-推荐向下调整建堆,时间复杂度更小
			for (size_t i = (_con.size() - 1 - 1) / 2; i >= 0; --i)//
			{
				adjust_down(i);
			}
		}

		void adjust_up(size_t child)
		{

			size_t parent = (child - 1) / 2;
			while (child > 0)
			{
				if (_con[parent] < con[child])
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}
		}


		void push(const T& x)
		{
			_con.push_back(x);

			adjust_up(_con.size() - 1);
		}

		void adjust_down(size_t parent)
		{
			size_t michild = parent * 2 + 1;
			while (michild < _con.size())
			{
				if (michild< _con.size() && _con[michild]>_con[michild + 1])
				{
					michild++;
				}

				if ( _con[michild]>] < _con[parent])
				{
					swap(_con[michild], _con[parent]);
					parent = michild;
					michild = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}
			
		}

		void pop()
		{
			swap(_con[0], _con(_con.size(-1)));
			_con.pop_back();

			adjust_down(0);
		}

		const T&top()const
		{
			return _con[0];
		}
			
		const empty()const
		{
			return _con.empty();
		}

		size_t size()const
		{
			return _con.size();
		}

	private:
		Container _con;
	};

};

如果对向上/向下调整忘记了的,就可以看下面图片回忆。

向上调整 

10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

 向下调整10-7 分别对 stack<int>、queue<int>、prioriuy_queue<int>的实例执行下面的操作:,c++,链表,数据结构,c++

五、仿函数/函数对象

仿函数(functor),就是使一个类的使用看上去像一个函数。其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了。


5.1仿函数的实现

这里是实现的比较大小的仿函数

#include <iostream>
using namespace std;

//仿函数/函数对象
namespace qhx
{
	template<class T>
	class less
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x < y;
		}
	};

	template<class T>
	class greater
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x>y;
		}
	};
};

int main()
{
	qhx::less<int> lessFunc;

	if (lessFunc(3, 2))
		cout << "yes" << endl;
	else
		cout << "no" << endl;

	return 0;
}

5.2仿函数的使用

冒泡排序

template <class T>

void BubbleSort(T* a, int n)
{
	for (int i = 0; i < n; i++)
	{
		int flag = 0;
		for (int j = 1; j < n - i; j++)
		{
			if (a[j - 1] > a[j])
				swap(&a[j - 1], &a[j]);
			flag = 1;
		}
		if (flag == 0)
			break;
	}
}

在C语言时期,冒泡函数进行比较的时候,是需要进入冒泡函数内部改变">","<"。或者是通过函数指针的方式,在多增加一个函数参数。

方法一:

if (a[j - 1] > a[j])        //改变其大与小

对于封装的好的函数来说,这样对使用者是非常不友好的,那么就可以通过接口的方式,增加函数指针。

方法二:

void BubbleSort(T* a, int n,bool(*pcom)(int,int))

方法二的话,这个方法是比较搓的,使用的函数时需要传太多变量,阅读性也不够强。那么c++中函数模板就起到了重要的作用了。我们可以增加一个模板参数,再增加给函数的参数,通过类型的对象去比较,可以想函数一样去是使用。

template <class T,class compaer>
// 冒泡排序
void BubbleSort(T* a, int n,compaer com)
{
	for (int i = 0; i < n; i++)
	{
		int flag = 0;
		for (int j = 1; j < n - i; j++)
		{
			//if (a[j - 1] > a[j])
			if (com(a[j - 1] , a[j]))
				swap(a[j - 1], a[j]);
			flag = 1;
		}
		if (flag == 0)
			break;
	}
}

void test_less()
{
	qhx::less<int> lessFunc;

	if (lessFunc(3, 2))
		cout << "yes" << endl;
	else
		cout << "no" << endl;
}

void test_BubbleSort()
{
	qhx::less<int> lessFunc;

	int arr[] = { 1, 2, 4, 9, 8, 3, 6, 7 };

	//BubbleSort(arr, sizeof(arr) / sizeof(arr[0]),lessFunc);
	BubbleSort(arr, sizeof(arr) / sizeof(arr[0]), lessFunc);

	for (auto e : arr)
	{
		cout << e << " ";
	}
}

int main()
{
	test_BubbleSort();

	return 0;
}

运行结果:9 8 7 6 4 3 2 1

这里的less是根据优先级队列来定义的,这里是降序,greater就是升序。

注意:这里模板参数是类,函数调用类模板增加的代码内存时不多的。例如上述只增加1个字节。

5.2仿函数的用法(进阶版)

这里是比较Daet--自定义类型的大小。我们有Date类型比较大小的方式后,但是对于Date*的比较是没有的,故此,我们创建一个struct(类-默认公共类),然后通过函数模板的调用,实现了比较非自定义变量指针的大小。文章来源地址https://www.toymoban.com/news/detail-803037.html

#include <iostream>
#include <queue>
#include <functional>

using namespace std;

class Date
{
public:
	Date(int year = 1900, int month = 1, int day = 1)
		: _year(year)
		, _month(month)
		, _day(day)
	{}

	bool operator<(const Date& d)const
	{
		return (_year < d._year) ||
			(_year == d._year && _month < d._month) ||
			(_year == d._year && _month == d._month && _day < d._day);
	}

	bool operator>(const Date& d)const
	{
		return (_year > d._year) ||
			(_year == d._year && _month > d._month) ||
			(_year == d._year && _month == d._month && _day > d._day);
	}

	friend ostream& operator<<(ostream& _cout, const Date& d)
	{
		_cout << d._year << "-" << d._month << "-" << d._day;
		return _cout;
	}

private:
	int _year;
	int _month;
	int _day;
};

struct PDateLess
{
	bool operator()(const Date* d1, const Date* d2)
	{
		return *d1 < *d2;
	}
};

struct PDateGreater
{
	bool operator()(const Date* d1, const Date* d2)
	{
		return *d1 > *d2;
	}
};



void TestPriorityQueue()
{
	// 大堆,需要用户在自定义类型中提供<的重载
	priority_queue<Date> q1;
	q1.push(Date(2018, 10, 29));
	q1.push(Date(2018, 10, 28));
	q1.push(Date(2018, 10, 30));
	cout << q1.top() << endl;

	// 如果要创建小堆,需要用户提供>的重载
	priority_queue<Date, vector<Date>, greater<Date>> q2;
	q2.push(Date(2018, 10, 29));
	q2.push(Date(2018, 10, 28));
	q2.push(Date(2018, 10, 30));
	cout << q2.top() << endl;


	// 大堆
	priority_queue<Date*, vector<Date*>, PDateLess> q3;
	q3.push(new Date(2018, 10, 29));
	q3.push(new Date(2018, 10, 28));
	q3.push(new Date(2018, 10, 30));
	cout << *q3.top() << endl;

	// 小堆
	priority_queue<Date*, vector<Date*>, PDateGreater> q4;
	q4.push(new Date(2018, 10, 29));
	q4.push(new Date(2018, 10, 28));
	q4.push(new Date(2018, 10, 30));
	cout << *q4.top() << endl;
}


int main()
{
	TestPriorityQueue();

	return 0;
}

到了这里,关于c++--stack,queue,priority_queue的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 容器适配器---deque和STL ---stack queue priority_queue的模拟实现 C++

    目录 一、容器适配器 deque原理 deque的缺陷 deque的优势 二、stack的模拟实现  三、queue的模拟实现 四、优先级队列的模拟实现 适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户

    2024年02月02日
    浏览(55)
  • 【C++】STL中的容器适配器 stack queue 和 priority_queue 的模拟实现

    适配器是一种设计模式 (设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。 例如我们常见的充电器就是一种适配器,它将我们常用的220V交流电压转化为4,5V (或者其他更高的电

    2023年04月26日
    浏览(61)
  • C++ queue&priority_queue

    目录 一、介绍 二、queue使用 三、模拟实现 四、优先级队列 五、priority_queue使用 OJ题:215. 数组中的第K个最大元素 快速排序 优先级队列 TOPK 六、模拟实现priority_queue 1、仿函数 2、优先级队列类 3、测试函数 1、队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,

    2024年02月01日
    浏览(49)
  • C++中的queue与priority_queue

      队列是一种容器适配器,专门用于上下文先进先出的操作中。队列的特性是先进先出,从容器的一端插入,另一端提取元素。   队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队

    2024年02月04日
    浏览(42)
  • 《priority_queue的模拟实现》

    本文主要介绍 所谓的仿函数(functor),是通过重载 () 运算符模拟函数形为的类。 因此,这里需要明确两点: 仿函数不是函数,它是个类; 仿函数重载了()运算符,使得它的对你可以像函数那样子调用(代码的形式好像是在调用函数)。(C语言中就是函数指针) 为了适应更多的

    2024年02月07日
    浏览(36)
  • 优先级队列priority_queue

    关于less建大根堆,输出降序序列,greater建小根堆,输出升序序列,这点和sort()函数相反,参考我的这篇博客 底层原理 priority_queue底层维护着一个对应类型的,vector物理结构,但相当于堆排序的结构,这个vector逻辑结构是一个二叉堆; 每次 插入数据 ,我们插在堆尾(vector尾),

    2024年02月16日
    浏览(40)
  • C++ STL priority_queue

    目录 一.认识priority_queue 二. priority_queue的使用 三.仿函数  1.什么是仿函数  2.控制大小堆  3.TopK问题 四.模拟实现priority_queue  1.priority_queue的主要接口框架  2.堆的向上调整算法  3.堆的向下调整算法  4.仿函数控制大小堆  五.priority_queue模拟实现整体代码和测试 priority_queue-

    2024年02月07日
    浏览(43)
  • C++优先队列(priority_queue)详解

    目录 一、 定义 二、优先队列内元素访问 三、优先队列常用函数 四、优先队列内元素的优先级          优先队列(priority_queue),底层的数据结构为 堆(heap) ,以此 保证队首元素一定是当前队列所有元素中优先级最高的。 我们也可以随时往优先队里面加入(push)元素,其队

    2024年02月16日
    浏览(42)
  • C++ | 仿函数与priority_queue

    目录 前言 一、初始仿函数 1、仿函数是什么 2、仿函数的使用  二、优先级队列 1、 优先级队列的基本概念 2、堆的储存结构与结点之前关系 3、堆的使用 4、堆的模拟实现         本文主要介绍优先级队列与仿函数,优先级队列实际上是我们在数据结构中学的堆;在介绍

    2024年02月15日
    浏览(38)
  • C++中的优先队列(priority_queue)

    什么是优先队列 优先队列(priority queue) 普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除。在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。优先队列具有优先级最高先出的性质。通常采用堆数据结构来实现。

    2024年02月15日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包