python数字图像处理基础(十)——背景建模

这篇具有很好参考价值的文章主要介绍了python数字图像处理基础(十)——背景建模。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景建模

背景建模是计算机视觉和图像处理中的一项关键技术,用于提取视频中的前景对象。在视频监控、运动检测和行为分析等领域中,背景建模被广泛应用。其基本思想是通过对视频序列中的像素进行建模,找到视频中的静态背景,并将不同的像素标记为背景和前景,从而使后续的对象检测和跟踪更为可靠。

前景-感兴趣的、运动的;背景-不变

背景消除-帧差法

由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。

python数字图像处理基础(十)——背景建模,数字图像处理,python,计算机视觉,开发语言
帧差法简单,但会引入噪音,还有空洞问题(前景只有白色轮廓,内部还是黑的)

混合高斯模型

混合高斯模型(Gaussian Mixture Model,简称GMM)是背景建模的一种常用方法。GMM模型假设一个像素的灰度值是由多个高斯分布混合而成的,这些高斯分布代表了不同的场景。对于每个像素,模型会使用多个高斯分布来表示其灰度值的分布,其中每个高斯分布具有特定的均值和方差。

在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后再测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为时背景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一定的鲁棒性。最后通过对一个有树枝摇摆的动态背景进行前景检测,取得了较好的效果。

ps:鲁棒性:在计算机科学中,健壮性(英语:Robustness)是指一个计算机系统在执行过程中处理错误,以及算法在遭遇输入、运算等异常时继续正常运行的能力。 诸如模糊测试之类的形式化方法中,必须通过制造错误的或不可预期的输入来验证程序的健壮性。很多商业产品都可用来测试软件系统的健壮性。健壮性也是失效评定分析中的一个方面。

GMM背景建模的基本步骤如下:

  1. 初始化: 对于每个像素,初始化一个包含多个高斯分布的GMM模型。
  2. 更新: 在每一帧中,对于每个像素,根据当前帧的像素值,更新GMM的参数(均值、方差、权重等)。
  3. 分类: 对于每个像素,根据当前帧的像素值和GMM模型,判断该像素是属于背景还是前景。
  4. 学习: 对于被判断为背景的像素,根据学习率(learning rate)更新GMM的参数,以适应场景的变化。
  5. 提取前景: 将被分类为前景的像素提取出来,用于后续的对象检测和跟踪。

混合高斯模型的主要优势在于能够适应场景的变化,对光照变化和动态背景具有一定的鲁棒性。然而,在处理复杂场景和大规模运动时,可能需要更复杂的背景建模技术。

  • 在视频中对于像素点的变化情况应当是符合高斯分布
    python数字图像处理基础(十)——背景建模,数字图像处理,python,计算机视觉,开发语言

  • 背景的实际分布应当时多个高斯分布混合在一起,每个高斯模型也可以带有权重
    python数字图像处理基础(十)——背景建模,数字图像处理,python,计算机视觉,开发语言

混合高斯模型学习方法

1.首先初始化每个高斯模型矩阵参数。
2.取视频中T帧数据图像用来训练高斯混合模型。来了第一个像素之后用它来当做第一个高斯分布。
3.当后面来的像素值时,与前面已有的高斯的均值比较,如果该像素点的值与其模型均值差在3倍的方差内,则属于该分布,并对其进行参数更新。
4.如果下一次来的像素不满足当前高斯分布,用它来创建一个新的高斯分布。一般为3-5个

混合高斯模型测试方法

在测试阶段,对新来像素点的值与混合高斯模型中的每一个均值进行比较,如果其差值在2倍的方差之间的话,则认为是背景,否则认为是前景。将前景赋值为255,背景赋值为0。这样就形成了一副前景二值图。

下面是一个使用OpenCV中的背景建模函数cv2.bgsegm.createBackgroundSubtractorMOG()创建混合高斯模型的简单示例:

import cv2
import numpy as np

# 读取视频
cap = cv2.VideoCapture('your_video.mp4')

# 创建混合高斯模型
bg_subtractor = cv2.bgsegm.createBackgroundSubtractorMOG()

while True:
    ret, frame = cap.read()
    if not ret:
        break

    # 应用背景建模器
    fg_mask = bg_subtractor.apply(frame)

    # 可选:对二值图像进行一些后处理,如膨胀和腐蚀
    kernel = np.ones((5, 5), np.uint8)
    fg_mask = cv2.morphologyEx(fg_mask, cv2.MORPH_CLOSE, kernel)

    # 显示原始帧和背景建模结果
    cv2.imshow('Original Frame', frame)
    cv2.imshow('Foreground Mask', fg_mask)

    if cv2.waitKey(30) & 0xFF == 27:  # 按ESC键退出
        break

cap.release()
cv2.destroyAllWindows()

在这个示例中,cv2.bgsegm.createBackgroundSubtractorMOG()函数创建了一个默认配置的混合高斯模型。可以通过调整参数来适应不同的场景。

此外,OpenCV中还提供了其他一些背景建模函数,如cv2.createBackgroundSubtractorKNN()等,它们也可以用于不同的场景和需求。文章来源地址https://www.toymoban.com/news/detail-803284.html


到了这里,关于python数字图像处理基础(十)——背景建模的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python数字图像处理基础(八)——harris角点检测、图像尺度空间、SIFT算法

    原理 Harris 角点检测是一种用于在图像中检测角点的算法。角点是图像中局部区域的交叉点或者突出的特征点。Harris 角点检测算法旨在寻找图像中对于平移、旋转和尺度变化具有不变性的角点。 该算法通过计算图像中每个像素点的灰度值的变化,来识别角点。具体来说,Ha

    2024年01月19日
    浏览(43)
  • python数字图像处理基础(七)——直方图均衡化、傅里叶变换

    均衡化原理 图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。 简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高 - 均衡 本质上,直方图均衡

    2024年01月18日
    浏览(55)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(57)
  • Python 基于 OpenCV 视觉图像处理实战 之 背景知识

    目录 Python  基于 OpenCV 视觉图像处理实战  之 背景知识 一、简单介绍 二、人工智能(Artificial Intelligence,AI) 三、OpenCV 四、计算机视觉任务的主要类型 五、计算机视觉是通过创建人工模型来模拟本该由人类执行的视觉任务。 Python是一种跨平台的计算机程序设计语言。是一

    2024年04月12日
    浏览(58)
  • 数字图像处理MATLAB大作业:基础版

    本次程序共分为10个功能点: 第一个功能点是实现彩色图像的灰度化、灰度图像的二值化及图像的灰度变化。 第二个功能点是实现图像的代数运算及逻辑运算。 第三个功能点是基于直方图修正的图像增强。 第四个功能点是基于空间域去实现图像平滑和提取图像边缘。 第五个

    2024年02月05日
    浏览(47)
  • 彩色图像处理之彩色图像直方图处理的python实现——数字图像处理

    彩色图像的直方图处理是一种重要的图像处理技术,用于改善图像的视觉效果,增强图像的对比度,或为后续的图像处理任务(如图像分割、特征提取)做准备。彩色图像通常由红色(R)、绿色(G)、蓝色(B)三个颜色通道组成,因此彩色图像的直方图处理相比单色图像更

    2024年01月23日
    浏览(66)
  • 《数字图像处理-OpenCV/Python》连载:形态学图像处理

    本书京东 优惠购书链接 https://item.jd.com/14098452.html 本书CSDN 独家连载专栏 https://blog.csdn.net/youcans/category_12418787.html 形态学图像处理是基于形状的图像处理,基本思想是利用各种形状的结构元进行形态学运算,从图像中提取表达和描绘区域形状的结构信息。形态学运算的数学原

    2024年02月19日
    浏览(74)
  • 数字图像处理与Python实现

    1.1数字图像简介 目的 提升图像的视觉感知质量 提取图像中感兴趣区域或特征 方便图像的存储和运输 特点 可再现能力强 处理精度高 适用范围广 灵活性高 方法 图像变换 图像压缩编码 图像增强和复原 图像分割 图像描述 图像分类(识别) 1.2图像的采样和量化 是将模拟图像转

    2024年02月04日
    浏览(41)
  • 《数字图像处理-OpenCV/Python》连载(41)图像的旋转

    本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 几何变换分为等距变换、相似变换、仿射变换和投影变换,是指对图像的位置、大小、形状和投影进行变换,将图像从原始平面投影到新的视平面。OpenCV图像的几

    2024年02月05日
    浏览(54)
  • 数字图像处理与Python实现-图像增强经典算法汇总

    本文将对图像增强经典算法做一个简单的汇总。图像增强的经典算法有:像素变换、图像逆变换、幂律变换、对数变换、图像均衡化、对比受限自适应直方图均衡(CLAHE)、对比度拉伸、Sigmoid校正、局部对比度归一化。 转换是将一组输入映射到一组输出的函数,这样每个输入

    2024年02月09日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包