【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘

这篇具有很好参考价值的文章主要介绍了【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言
🌈个人主页:聆风吟
🔥系列专栏:图解数据结构、算法模板
🔖少年有梦不应止于心动,更要付诸行动。


一. ⛳️算法的定义

    算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作



二. ⛳️算法的特性

    算法具有五个基本特性:输入、输出、有穷性、确定性和可行性。

2.1 🔔输入输出

    算法具有零个或多个输入,尽管对于大多数算法来说,输入参数都是有必要的,但对于个别情况,如打印"hello world!"这样的代码,不需要任何输入参数,因此算法的输入可以是零个。

2.2 🔔输入输出

    算法至少有一个或多个输出,算法是一定需要输出的,不需要输出,你用这个算法干嘛呢?输出的形式可以打印输出,也可以是返回一个或多个值等。

2.3 🔔有穷性

    有穷性:是指算法在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤都在可接受的时间内完成

2.4 🔔确定性

    确定性:算法的每一步骤都具有确定的含义,不会出现二义性。算法在一定条件下,只有一条执行的路径,相同的输入只能有唯一的输出结果。算法的每一步骤都被精确定义而无歧义。

2.5 🔔可行性

    可行性:算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成



三. ⛳️算法设计要求

    算法不是唯一的。也就是说,解决同一个问题,可以有多种解决问题的算法。通常为了设计一个 “好” 的算法应考虑达到一下目标:
【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言

3.1 🔔正确性

    正确性:算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性,能够得到问题的正确答案。但是算法的 “ 正确 ” 一词在用法上通常有很大差别,大体分为一下四个层次:

  1. 算法程序没有语法错误;
  2. 算法程序对于合法的输入数据能够产生满足要求的输入结果;
  3. 算法程序对于非法的输入数据能够得出满足规格说明的结果;
  4. 算法程序对于精心选择的,甚至刁难的测试数据都有满足要求的输出结果。

对于这四层含义,层次 1的要求最低,但仅仅没有语法错误实在谈不上是好算法。这就是如同仅仅解决温饱,不算是生活幸福一样。而层次 4是最难实现的,我们几乎不可能逐一验证所有的输入都得到正确的结果。所以一般情况下,我们通常把层次 3作为衡量一个算法算法是否合格的标准。

3.2 🔔可读性

    可读性:算法的另一个目的是为了便于阅读,来理解和交流。可读性高有助于人们理解算法,晦涩难懂的算法往往隐含错误,不易被发现,并且难以调试和修改。

3.2 🔔健壮性

    健壮性:当输入数据不合法时,算法也能做出相关处理而不是产生异常或莫名其妙的结果

3.3 🔔时间效率高和存储量低

    时间效率指的是算法的执行时间。对于同一个问题,如果有多个算法能够解决,执行时间短的算法效率高,执行时间长的效率低。存储量需求指的是算法在执行过程中需要的最大空间,主要指算法程序运行时所占用的内存或外部硬盘存储空间。因此,设计算法时应尽量满足时间效率高和存储量低的需求。



四. ⛳️算法效率的度量方法

    刚才我们提到了设计算法要提高效率。这里的效率大都指算法的执行时间。算法的执行时间需要依据该算法编制的程序在计算机上运行时所消耗的时间来度量的。而度量一个程序的执行时间通常有有两种方法 —— 事后统计方法和事前分析估算方法。

4.1 🔔事后统计方法

    事后统计方法:这种方法主要是通过设计好的测试程序和数据,利用计算机计时器对不同的算法编制的程序的运行时间进行比较,从而确定算法效率的高低。但是这种方法明显是有很大的缺陷:

  • 必须要依据算法事先编制好程序,这通常要需要花费大量时间和精力。如果编制出来发现它根本就是一团很糟糕的算法,那不就是竹篮打水一场空了吗?
  • 时间的比较依赖计算机硬件和软件等环境因素的影响,有时会掩盖算法本身的优劣。
  • 算法的测试数据设计困难,并且程序的运行时间往往还与测试数据的规模有很大关系,效率高的算法在小的测试数据面前往往得不到体现。

基于事后统计方法有这样那样的缺陷,我们一般不予以采纳,而是采用另一种事前分析估算方法。

4.2 🔔事前分析估算方法

    事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算。经过分析我们可以发现,一个用高级语言程序语言编写的程序在计算机上运行时所消耗的时间取决于一下因素:
【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言解析
    第(1)条是一个好算法的根本,第(2)条要有软件来支持,第(4)条要看硬件性能。因此,抛开这些与计算机硬件、软件有关的因素,一个程序的运行时间,依赖于算法的好坏和问题的输入规模。所谓问题输入规模是指输入量的多少。



五. ⛳️算法的复杂度

5.1 🔔算法的复杂度的简单介绍

    算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度

    时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


5.2 🔔算法复杂度在面试中考察

【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言

由此可以看出算法复杂度的重要性,所以说同学们下面的内容一定要好好学哦。言归正传接下来让我们开始具体讲解时间复杂度和空间复杂度。



六. ⛳️算法的时间复杂度(重点)

6.1 🔔算法的时间复杂度定义

    在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度

  • 示例:请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;//执行 N*N 次
		}
	}

	for (int k = 0; k < 2 * N; ++k)
	{
		++count;//执行 2*N 次
	}

	int M = 10;
	while (M--)
	{
		++count;//执行 10次
	}

	printf("%d\n", count);
}

【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言

     实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么我们就可以使用大O的渐进表示法。看到这估计有同学该问了大O的渐进表示法是什么,它又是如何推导的呢?且听我慢慢道来,让我们继续接着向下面学习。


6.2 🔔大O的渐进表示法

大O符号(big O notation):是用于于描述函数渐进行为的数学符号

推导大O阶方法:

(1)用常数1取代运行时间中的所有加法常数。
(2) 在修改后的运行次数函数中,只保留最高阶项。
(3)如果最高阶项存在且其系数不是1,则去除与这个项相乘的系数。得到的结果就是大O阶。

结合上面示例: 使用大O的渐进表示法以后,Func1的时间复杂度为:
【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数


6.3 🔔常见的时间复杂度

  常见的时间复杂度如下表所示:
【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言注:对数在文本中不好表示,以 2 为底的对数通常简写为(logn)

  常用的时间复杂度所耗费的时间从小到大依次是:

O(1) < O(logn) < O(n) < O(nlogn) < O(2n) < O(n3) < O(2n) < O(n!)

【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言


6.4 🔔最好情况、最坏情况与平均情况

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x
      最好情况:1次找到
      最坏情况:N次找到
      平均情况:N/2次找到
在实际中 一般在没有特殊说明的情况下,关注的都是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。



七. ⛳️算法的空间复杂度

算法空间复杂度的定义:

  • 空间复杂度也是一个数学表达式,是对一个算法在运行过程中额外临时占用存储空间大小的量度
  • 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以 空间复杂度算的是变量的个数
  • 空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

注意: 函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。



📝全文总结

本文主要讲解:

  1. 算法的定义:算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。
  2. 算法的特性:有穷性、确定性、可行性、输入、输出。
  3. 算法的设计要求:正确性、可读性、健壮性、高效率和低存储量需求。
  4. 算法的度量方法:事后统计方法、事前分析估算方法。
  5. 推导大O阶
  6. 时间复杂度
  7. 空间复杂度

     今天的干货分享到这里就结束啦!如果觉得文章还可以的话,希望能给个三连支持一下,聆风吟的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是作者前进的最大动力!
【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘,图解数据结构,数据结构,算法,时间复杂度,空间复杂度,c语言文章来源地址https://www.toymoban.com/news/detail-803320.html

到了这里,关于【图解数据结构】深入剖析时间复杂度与空间复杂度的奥秘的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构——时间复杂度

    前言: 当谈到数据结构和算法时,时间复杂度是一个至关重要的概念。时间复杂度是衡量算法执行时间随输入规模增长而变化的度量,它指示了算法的效率和性能。在本篇博客中,我们将深入探讨时间复杂度的相关知识,并结合C语言给出一些代码示例来帮助读者更好地理解

    2024年02月21日
    浏览(37)
  • 数据结构之时间复杂度

    目录 一、时间复杂度的概念 二、大O的渐进表示法 三、常见时间复杂度计算举例         时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的

    2024年02月16日
    浏览(38)
  • 数据结构--时间/空间复杂度

    时间复杂度简单的说就是一个程序运行所消耗的时间,叫做时间复杂度,我们无法目测一个程序具体的时间复杂度,但是我们可以估计大概的时间复杂度。 一段好的代码的就根据算法的时间复杂度,即使在大量数据下也能保持高效的运行速率,这也是我们学习算法的必要性。

    2024年02月14日
    浏览(32)
  • 数据结构-时间空间复杂度

    目录 前言 1.什么是数据结构 2.什么是算法 3.数据结构和算法的重要性 1.算法的时间复杂度和空间复杂度 1.1算法效率 1.1.1如何衡量一个算法的好坏 1.1.2算法的复杂度 1.2时间复杂度 1.2.1时间复杂度的概念 1.2.2大O的渐进表示法 2.编程练习 2.1.1 排序+遍历 2.1.2 2.1.3 单身狗解法 1.3空

    2024年02月15日
    浏览(48)
  • 【数据结构】时间、空间复杂度

    ⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 算法效率分析分为两种:第一种是 时间效率 ,第二种是 空间效率 。 时间效率 被称为 时间复杂度 ,而 空间效率 被称作 空间复

    2024年02月07日
    浏览(50)
  • 数据结构 — 时间复杂度、空间复杂度

    数据结构_空间复杂度_时间复杂度讲解_常见复杂度对比 本文介绍数据结构中的时间复杂度和空间复杂度 ***文章末尾,博主进行了概要总结,可以直接看总结部分*** 博主博客链接:https://blog.csdn.net/m0_74014525 点点关注,后期持续更新系列文章 算法效率指的是算法在处理数据时

    2024年02月13日
    浏览(49)
  • 数据结构(时间复杂度,空间复杂度)

    算法的时间复杂度是一个数学函数,算法中的基本操作的执行次数,为算法的时间复杂度。 1.大O的表示法 2.推导大O表示法 1、用常数1取代运行时间中的所有加法常数。 2、在修改后的运行次数函数中,只保留最高阶项。 3、如果最高阶项存在且不是1,则去除与这个项目相乘的

    2024年02月07日
    浏览(49)
  • 【数据结构】时间和空间复杂度

     马上就要进入到数据结构的学习了 ,我们先来了解一下 时间和空间复杂度,这也可以判断我们的算法是否好坏; 就是看它的算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度

    2024年02月05日
    浏览(45)
  • 【数据结构】 时间和空间复杂度

    我们知道一道题,有许多种代码可以实现它。但是我们应该怎么去选择呢? 比如博主在前面讲过的斐波那契数,我们可以用递归和循环来实现。那么到底那一种方法好呢?为什么?该如何衡量一个算法的好坏呢?这就涉及到了一个新的概念—— 算法效率 算法效率分析分为两

    2024年02月12日
    浏览(35)
  • 算法之时间复杂度---数据结构

    目录 前言: 1.时间复杂度 1.1时间复杂度的理解 1.2规模与基本操作执行次数 1.3大O渐进表示法 1.4计算基本操作的次数 2.常见的时间复杂度及其优劣比较 ❤博主CSDN:啊苏要学习     ▶专栏分类:数据结构◀   学习数据结构是一件有趣的事情,希望读者能在我的博文切实感受到

    2024年02月05日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包