Halcon基于形状的模板匹配
基于形状的模板匹配,也称为基于边缘方向梯度的匹配,是一种最常用也最前沿的模板匹配算法。该算法以物体边缘的梯度相关性作为匹配标准,原理是提取ROI中的边缘特征,结合灰度信息创建模板,并根据模板的大小和清晰度的要求生成多层级的图像金字塔模型。接着在图像金字塔层中自上而下逐层搜索模板图像,直到搜索到最底层或得到确定的匹配结果为止。下图是基于形状的模板匹配的一个例子。
图(a)为参考图像,从中选取一块矩形区域作为模板图像,并根据其灰度值创建模板。在图 (b)中,图像不仅存在尺寸的缩放,还发生了一定的旋转,但在这种情况下仍得到了理想的匹配结果。
该方法使用边缘特征定位物体,对于很多干扰因素不敏感,如光照和图像的灰度变化,甚至可以支持局部边缘缺失、杂乱场景、噪声、失焦和轻微形变的模型。更进一步说,它甚至可以支持多个模板同步进行搜索。但是,在搜索过程中,如果目标图像发生大的旋转或缩放,则会影响搜索的结果,因此不适用于旋转和缩放比较大的情况。文章来源地址https://www.toymoban.com/news/detail-803493.html
文章来源:https://www.toymoban.com/news/detail-803493.html
到了这里,关于Halcon基于形状的模板匹配的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!